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SUMMARY 

 

Cardiac resynchronization therapy (CRT) has recently emerged as an 

effective treatment option for heart failure patients with dyssynchrony.  Patients 

have traditionally been chosen for CRT based on a prolonged QRS interval.  

However, this selection method is far from ideal, as approximately 30% of those 

receiving CRT do not show any clinical improvement.  

Tissue Doppler imaging (TDI) suggests that one of the best predictors of 

response to CRT is the underlying level of mechanical dyssynchrony in the 

myocardial wall prior to CRT.  As a result, there has been growing interest in direct 

imaging of the myocardial wall.  Because myocardial contraction is a complex, 

three-dimensional movement, providing an accurate picture of myocardial wall 

motion can be challenging.  Echocardiography initially emerged as the modality of 

choice, but the long list of limitations (limited echocardiographic windows, one 

direction of motion, poor reproducibility) has fostered interest in exploring the use 

of MR for myocardial wall imaging.  Although MR presents some unique 

drawbacks (expensive equipment, longer imaging times), it is able to overcome 

many of the limitations of TDI.  In particular, Phase Velocity Mapping (MR PVM) 

can provide a complete, three-directional description of motion throughout the 

entire myocardial wall at high spatial and temporal resolution.  

The overall goal of this project was to develop a patient-selection method 

for CRT based on myocardial wall velocities acquired with MR PVM.  First the 
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image acquisition and post-processing protocols for MR PVM imaging of 

myocardial tissue were developed.  A myocardial motion phantom was used to 

verify the accuracy of, and optimize the acquisition parameters for, the developed 

MR PVM sequence.  Excellent correlation was demonstrated between 

longitudinal myocardial velocity curves acquired with the optimized MR PVM 

sequence and Tissue Doppler velocities.  A database describing the normal 

myocardial contraction pattern was constructed.  A small group of dyssynchrony 

patients was compared to the normal database, and several areas of delayed 

contraction were identified in the patients.  Furthermore, significantly higher 

levels of dyssynchrony were detected in the patients than the normal volunteers.  

Finally, a method for computing transmural, endocardial, and epicardial, radial 

strains and strain rates from MR PVM velocity data was developed.   
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CHAPTER 1 

PROJECT SPECIFIC AIMS 

Introduction 

Approximately 30% of the 5 million people living with heart failure in the United 

States will develop a conduction delay in which the ventricles do not beat 

synchronously1,2.  Cardiac resynchronization therapy (CRT) has shown promise as a 

treatment option for these patients who have not responded well to conventional medical 

therapy.  To date, patients have been chosen as candidates for CRT based primarily on the 

width of the QRS interval on a surface electrocardiogram.  However, this classification 

system is far from ideal as up to 30% of patients undergoing CRT do not show any 

improvement with treatment.  Because CRT involves the implantation of a device and 

insertion of leads into the heart, there is a clear need for a better method to identify 

patients who will benefit from the procedure.  Given that dyssynchrony is a mechanical 

delay in the contraction of the myocardial wall, directly examining the velocity of the 

myocardial wall may provide a better way to quantify the extent and severity of 

dyssynchrony.  Although tissue Doppler imaging (TDI) is able to obtain myocardial 

velocity information, a magnetic resonance technique called phase velocity mapping (MR 

PVM) presents several advantages for imaging the mechanical delay of dyssynchrony.  

While TDI can only retrieve regional long-axis myocardial motion, MR PVM can extract 

multidirectional velocity for the entire myocardium, and may, therefore, be a better tool 

for identifying and quantifying dyssynchrony.   
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Specific Aims  

The objectives of this project are to validate and optimize the MR PVM 

technique in a model of the myocardium, to develop a database of the myocardial 

contraction pattern in normal subjects, and to examine how that contraction pattern is 

altered in patients with dyssynchrony.  The long term goal of this project is to utilize MR 

PVM to identify patients as candidates for CRT.   

The specific aims of this project were to:  

1) Develop imaging protocol and analysis software for MR PVM tissue velocity 

images.  Develop the MR PVM scan protocol used to acquire myocardial tissue 

velocities.  Develop post-processing software that removes background phase errors, 

tracks individual myocardial pixels throughout the cardiac cycle, and standardizes the 

LV into the AHA 17-segment model of the myocardium.  Successful completion of 

this aim resulted in standardized image acquisition and post-processing protocols 

that were applied to all collected datasets.   

2) Construct an imaging phantom and validate the MR PVM tissue velocity scan 

and optimize acquisition parameters for tissue tracking.  Construct an MRI-

compatible phantom model of the LV capable of controlled, three-dimensional 

motion.  Image the motion-controlled phantom with the finalized MR PVM protocol 

to verify the accuracy of velocity data acquired via MR PVM.  Optimize MR PVM 

scan parameters to produce the most accurate tracking results.  Successful completion 

of this aim resulted in a velocity imaging technique optimized for imaging myocardial 

tissue motion.   

3) Compare MR PVM and TDI myocardial tissue velocities.  Compare myocardial 

tissue velocities acquired with the optimized MR PVM velocity acquisition protocol 
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and TDI in a group of normal volunteers and heart failure patients prior to device 

implantation with CRT.  Compare peak velocities and time-to-peak velocities in the 

septal and lateral walls via a correlation coefficient and Bland-Altman analysis.  Assess 

the reproducibility of both velocity imaging techniques in the group of normal 

volunteers.  Successful completion of this aim demonstrated excellent correlation 

between MR PVM and TDI.  

4) Develop a database describing the normal myocardial contraction pattern.  A 

database describing the normal myocardial contraction pattern was constructed from a 

group of normal volunteers with no history of cardiac disease.  The database 

contained the mean and standard deviation of each motion parameter (peak systolic 

velocity, peak diastolic velocity, time-to-peak systolic velocity, and time-to-peak 

diastolic velocity) in each of the three myocardial velocity directions (radial, 

circumferential, and longitudinal).  As a proof of concept, velocity data from a small 

group of heart failure patients imaged prior to CRT was compared to the normal 

database.  Successful completion of this specific aim resulted in a database describing 

the normal regional myocardial contraction pattern.  

5) Develop software for computing radial strain and SR from MR PVM velocity 

data.  Develop an algorithm for computing myocardial strain and strain rate from MR 

PVM velocity images.  Compare peak strain values computed by the developed 

algorithm to peak strain values computed from contours drawn on cine SSFP images.  

Differentiate between transmural, endocardial, and epicardial strains and strain rates.  

Successful completion of this aim resulted in an algorithm for computing myocardial 

strain and strain rate that could differentiate between transmural, endocardial, and 

epicardial values.   
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CHAPTER 2 

BACKGROUND AND SIGNIFICANCE 

Cardiac Dyssynchrony 

American Heart Association statistics for 2004 indicate that 5,000,000 individuals 

in the United States live with chronic heart failure1.  Approximately 30% of heart failure 

patients develop an intraventricular conduction delay that causes the ventricles to beat 

asynchronously, further contributing to decreased cardiac function2.  Cardiac 

dyssynchrony is usually observed in heart failure patients with dilated cardiomyopathy 

(both ischemic and nonischemic in origin) and left bundle branch block (LBBB).  In the 

healthy heart, the electrical impulse initiating contraction arrives at both ventricles 

concurrently, and the two ventricles contract simultaneously.  In patients with LBBB, the 

onset of electrical depolarization is significantly delayed in the lateral free wall of the left 

ventricle, causing this area to contract much later than normal.  Since ventricular 

contraction time usually remain normal in the septal wall, the ventricle beats 

dyssynchronously3.   

Dyssynchronous contraction of the ventricular wall contributes to a decrease in 

systolic function.  The earlier activated septal wall shortens at low stress and pre-stretches 

the later activated posterolateral wall4.  As systole progresses, the late activated region 

develops higher load and stretches the early-activated region to limit further shortening.  

Late systolic stretching of the septal wall decreases ejection fraction by acting as an sink 

for blood that would normally be ejected4.  The net result is a sloshing of the blood from 

early to late to early activated regions and a decrease in ejection fraction.  In addition, the 
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late stretch of the septal wall can break cross bridges in the contracting muscle fibers, 

thus diminishing the force developed during systole4.   

The contraction of the myocardial wall during dyssynchrony not only represents a 

net loss effect of systolic contraction, but it also causes increased energy consumption 

and increased wall stress in the myocardium5,6.  The work produced by the early-

activated regions is largely converted to prestretch of other regions and does not 

contribute significantly to ejection because ventricular pressure is low during its 

activation4,6.  The late-activated free wall starts to contract at higher wall stress and also 

wastes work by stretching the early-activated region rather than contributing the ejection 

of blood6.  Therefore, dyssynchronous activation of the myocardium results in a transfer 

of work from one side of the heart to the other, thereby reducing ejection efficiency4.  

Until recently, there was little that could be done to correct this dyssynchrony and 

improve the quality of life for this specific group of heart failure patients.  

 

Cardiac Resynchronization Therapy  

In recent years, cardiac resynchronization therapy (CRT) has emerged as an 

effective treatment option for heart failure patients with dyssynchrony who are at optimal 

medical management.  Treatment with CRT involves the implantation of a pacing device 

under the skin of the chest and the transvenous insertion of leads into the heart.  A sensing 

lead is placed in the right atria, and leads that simultaneously depolarize the ventricles are 

implanted into opposite walls of the left ventricle.  The InSync® cardiac 

resynchronization system (Medtronic, Minneapolis, MN) has been available globally 

since August 20017 and the Guidant Cardiac Resynchronization Therapy Defibrillator 
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System (Guidant Corporation, St. Paul, MN) was approved by the US Food and Drug 

Administration in 20028.   

 

Clinical Results 

Over 5,000 patients have participated in numerous observational studies, as well 

as several randomized, controlled trials that have demonstrated the efficacy, safety, and 

beneficial long-term effects of CRT9.   

The InSync trial was the first observational study of CRT as a therapy for heart 

failure patients.  The study included 103 patients n Europe and Canada with idiopathic or 

ischemic dilated cardiomyopathy, in New York Heart Association (NYHA) class III and 

IV, with left ventricular ejection fraction (LVEF) <35% and QRS duration >150 ms9-12.  

Improvements were observed in the quality of life score (as measured by the Minnesota 

Living with Heart Failure questionnaire), NYHA functional class, and exercise capacity 

(measured by a six-minute walk distance).  NYHA class improved an average of one 

class during the twelve month follow-up period.  Although InSync was not a randomized 

trial, it demonstrated that the benefits of CRT exceeded traditional drug therapy 

(including diuretics, digitalis, ACE-inhibitors, beta-blockers, carvediol, antiarrhythmics, 

and amiodarone), thus encouraging further randomized, controlled trials of CRT.    

InSync was followed by several randomized, controlled trials that demonstrated 

the efficacy of CRT.  The Multisite Stimulation in Cardiomyopathy (MUSTIC) study, the 

Multicenter InSync Randomized Clinical Evaluation (MIRACLE), and CONTAK CD all 

showed that CRT patients improved clinically only during periods of active pacing.  In 

the MUSTIC study  the mean 6-minute walk distance increased 23% during  the period of 
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active pacing and improvements were seen in quality of life, NYHA functional class, and 

the number of hospitalizations decreased9.  MIRACLE (n=453) reported that patients in 

the active pacing group demonstrated significant improvements in the quality of life score 

(-18.0 vs. -9.0, p=0.001), 6-minute walk distance (+39 vs +10 m, p=0.005), NYHA 

functional class (-1 vs 0, p<0.001), treadmill exercise time ( +81 vs +19 sec, p=0.001), 

and peak VO2 (+1.1 vs. +0.2 mL/kg/min, p<0.1) compared to the control group9,13.  

During CONTAK CD (n=581), peak VO2, 6-minute hall walk distance, quality of life, 

and NYHA class were all significantly improved in the active pacing group, as compared 

to the controls13.  The MIRACLE-ICD study showed that CRT was safe even for those 

patients requiring an ICD9.  

The Comparison of Medical Therapy and Pacing Defibrillation in Heart Failure 

(COMPANION) study was the largest study enrolled 2200 patients with moderate or 

severe heart failure (enrollment criteria= NYHA Class III or IV, EF<=35%, QRS>120ms 

and more than one hospitalization related to heart failure in the past year) between 2000 

and Nov 200213,14.  The goal of COMPANION was to compare traditional drug therapy 

alone with drug therapy in combination with CRT, either with or without an ICD.  

Patients were randomized into one of three groups: optimal medical therapy alone, 

optimal medical care therapy and CRT, and optimal medical therapy and CRT with an 

ICD.  The study was terminated prematurely for ethical reasons in November of 2002 

after an independent data and safety monitoring board reported a nearly 20% reduction in 

all-cause mortality in the patients who received CRT, as compared to the patients 

receiving only medical therapy, and deemed that withholding treatment for the control 

group was unethical. 
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Mechanisms 

Although the exact mechanism of CRT remains unclear, it is believed that CRT 

increases cardiac function by improving coordination between the ventricular walls15,16.  

It has been hypothesized that increased coordination between the ventricular walls 

improves systolic function by increasing LV filling time, reducing mitral regurgitation, 

reducing left ventricular wall stress, and triggering left ventricular reverse remodeling16.   

In many patients with an intraventricular conduction delay, atrial activation 

remains normal16.  Therefore, early passive ventricular filling and atrial kick may occur 

simultaneously, leading to decreased filling of the left ventricle16,17.  After treatment with 

CRT, the ventricles contract simultaneously, allowing the left ventricle to complete its 

contraction earlier, thereby increasing diastolic filling time16.  This in turn increases 

systolic efficiency by allowing the ventricle to eject a larger blood volume with each 

contraction.  

Normal mitral valve function depends on proper timing of the atrial and 

ventricular contraction16.  In the presence of an intraventricular conduction delay, mitral 

valve closure will be compromised because the contraction of the atria is not followed by 

an appropriately timed ventricular contraction.  If the time delay between atrial and 

ventricular contraction is sufficiently large, an atrioventricular pressure gradient may 

develop, leading to mitral regurgitation.  Septal wall motion is normally timed in patients 

with an inter-ventricular conduction delay, even if lateral wall motion is significantly 

delayed, meaning that the septum has completed its contraction and is already relaxing—

and actually moving away from the ventricular free wall—when the rest of the ventricle 

is contracting16.  This paradoxical movement of the septum during ventricular systole 

decreases the efficiency of mitral valve closing by distorting the mitral valve apparatus 18.  
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Biventricular pacing restores mitral function by activating both walls of the ventricle 

simultaneously—thereby forcing the lateral free wall to contract with the septum—and 

ensuring that ejection occurs before the septum relaxes 16,18.   

Chronically high wall stress in the ventricles is associated with ventricular 

remodeling.  In heart failure patients with dilated cardiomyopathy, wall stress is 

chronically elevated, leading to progressive remodeling of the left ventricle, and further 

dilation.  By improving global left ventricular function and making the contraction of the 

left ventricle more synchronous, CRT is believed to reduce left ventricular wall stress.  

This reduction in wall stress is believed to trigger the left ventricular reverse remodeling 

that is often observed in patients who respond positively to CRT 5.  

It is especially important to note that the increased systolic function observed with 

CRT is actually accompanied by a reduction in global myocardial oxygen consumption5,6.  

It has been hypothesized that the left ventricular reverse remodeling observed with CRT 

is responsible for the diminished oxygen demand of the myocardium5.  This is in stark 

contrast to the inotropic agents used to enhance systolic function which actually increase 

the energy demand of the failing heart6,19.   

 

Patient Selection 

The QRS wave on a surface electrocardiogram signifies electrical depolarization.  

Since electrical depolarization initiates mechanical activation, the duration of the QRS 

interval was believed to be an electrical marker of the underlying mechanical 

dyssynchrony.  Indeed, it has been shown that QRS duration measured on a surface 

electrocardiogram is a good marker for inter-ventricular dyssynchrony20.  Therefore, 

heart failure patients were originally selected as candidates for biventricular pacing if 
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they exhibit a prolonged QRS interval (usually >120ms) on a surface electrocardiogram.  

However, this system of selecting patients is far from ideal, as up to 30% of patients 

undergoing cardiac resynchronization therapy do not experience any clinical 

improvement and are deemed as “non-responders” to the treatment21-24.   

Many attempts have been made at identifying baseline clinical parameters that 

consistently and accurately separate responders from non-responders22,23,25-29.  No 

significant differences have been found in baseline parameters for responders and 

nonresponders in age22,23,26,27, heart rate29, gender 22,23,25-27, LVEF22,23,25-29, medication 

regimen27, duration of heart disease22,26, NYHA function class22,23,25,26, left ventricular 

end diastolic pressure25,28,29, LV volume22,23,26,28,29, presence of atrial fibrillation22,26,27, 

pacing site22,26, presence of LLBB25, diastolic arterial pressure25, aortic pulse pressure25, 

left ventricular diastolic filling time28, cardiac input26, cardiac output26, peak oxygen 

intake26, quality of life score23, 6-minute walk distance23, pulmonary vascular 

resistance26, or pulmonary capillary wedge pressure26.  

Studies examining electrical markers as a means of separating responders and 

nonresponders have produced conflicting results.  Some found that responders had a 

longer baseline QRS interval than non-responders25,28, while others observed that there 

was no difference in QRS duration between responders and non-responders prior to 

device implantation 22,23,25-29.  Pitzalis et al. concluded that responders had a slightly 

longer baseline PQ interval than non-responders29, but other studies found no difference 

in the length of the baseline PR interval22,25,28.   

Investigations of non-electrical differences between responders and non-

responders have produced similarly conflicting results: Oguz et al. reported that the 

duration of mitral regurgitation prior to device implantation was longer in responders 

than non-responders28, but other studies have found no difference in the presence or 
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degree of mitral regurgitation prior to device implantation between responders and non-

responders22,25,26,29.  It has previously been reported that non-responders were more likely 

to have ischemic heart disease or a history of myocardial infarction than responders, and 

recently it has been suggested that a larger scar burden and fewer viable myocardial 

segments is predicative of non-response to CRT27,30-35.  A cutoff value of 15% total scar 

has been proposed as a means of predicted clinical response to CRT with a sensitivity of 

85% and a specificity of 90%33, and a significant inverse relationship has been 

established between total scar burden and a reduction in LV end-systolic volume 6-

months post CRT34.  In addition to total scar burden, it has been suggested that the 

presence of scar tissue within the posterolateral wall of the myocardium is one of the 

most important predictors of response to CRT31,32.  However these conclusions have been 

challenged by several other studies which have found no differences in the etiology of 

heart disease between responders and non-responders22,23,25,26.  Part of these conflicting 

findings may be due to the heterogeneous patterns of myocardial scarring found within 

the heart failure population33, and the small numbers of patients enrolled in these 

preliminary studies.   

These conflicting results highlight the inadequacy of current methods for selecting 

patients for CRT.  Treatment with CRT is an expensive, invasive procedure involving the 

implantation of a pacing device and the insertion of leads into the walls of the heart.  

Furthermore, CRT devices can cost up to $40,000 with total hospital charges per patient 

approaching $100,00036,37.  Clearly, there is a need to better identify patients who will 

benefit from this treatment.   

One of the reasons for the relatively high percentage of non-responders to CRT 

could be a result of the method by which patients are identified as candidates for the 

procedure.  CRT studies have enrolled patients primarily based on the presence of a 
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prolonged QRS interval on a surface electrocardiogram, as it has been shown that the 

width of the QRS interval on a surface electrocardiogram was a good marker for inter-

ventricular dyssynchrony20 9,14,38,39.  However, it has since been shown that a shortening 

of the QRS interval does not necessarily indicate a positive response to CRT4,26,27,40 and 

that heart failure patients with a normal QRS interval can also benefit from CRT4,40-42.  

These studies suggest that the QRS interval is an unreliable marker of the underlying 

mechanical problem either because electrical delay times and mechanical dyssynchrony 

in the heart are not directly related4,9,43, or because response to CRT is based on intra-

ventricular dyssynchrony (dyssynchrony within the left ventricle ).  In fact, some recent 

research suggests that intra-ventricular dyssynchrony may be important in predicting 

response to CRT than inter-ventricular dyssynchrony44,45.  Furthermore, approximately 

30% of patients with wide a QRS interval do not exhibit intra-ventricular dyssynchrony40, 

which may at least partially explain the low response rates in the initial CRT trials.  

Therefore, a better way to quantify the extent and severity of dyssynchrony—and to 

select patients as candidates for CRT—is to directly examine the motion of the 

ventricular walls.   

 

Normal Myocardial Wall Motion  

Myocardial contraction is a complex, three-dimensional movement involving 

longitudinal and radial shortening, torsion and shear.  During systole, the normal left 

ventricle shortens along the radial and longitudinal directions and twists in different 

directions along the length of the LV to create a wringing motion.  In diastole, the motion 

is reversed and the ventricle returns to its original shape.   
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Longitudinal Motion 

Longitudinal motion describes the movement of the LV along the basal-apical 

axis.  During systole, the left ventricle shortens along its longitudinal axis, with the base 

of the LV moving closer toward the apex.  This motion is reversed during diastole when 

the base moves away from the apex46,47.  During diastolic relaxation, there is a slight 

overshoot of the base past its initial starting position, followed by a brief period of motion 

back toward the apex46,48.  The longitudinal velocity curve shown in Figure 2.1 illustrates 

this motion extremely clearly.  Recall that longitudinal motion is defined as positive for 

motion towards the LV apex and negative for motion toward the base of the myocardium.  

In the basal slice where the velocity curve was measured, the descent of the base toward 

the apex is seen as positive velocity during systole (A), and the movement of the base 

away from the apex during diastole is seen as the negative velocity peak (B).  The slight 

overshoot of the base during diastolic relaxation is seen as the positive peak during 

diastole (C).   

 

Figure 2.1: Longitudinal velocity curve.  



www.manaraa.com

 14 

In the left ventricle, greater longitudinal displacement is observed in the lateral 

wall than in the septal wall, as motion in the septal wall is restricted by the right ventricle.  

This is illustrated in Figure 2.2 by a finite element model of myocardial contraction taken 

from a 1994 paper by Young et al.49.  The end-diastolic location of the wire mesh is 

shown in lighter gray lines and the end-systolic position is shown by the darker lines.  

Note that when the LV shortens longitudinally during systole, the base moves 

significantly toward the apex, while the apex remains almost stationary.  Also observe 

that longitudinal displacement is not uniform throughout the LV, with greater 

displacement observed in the lateral wall than the septal wall.   

 

Figure 2.2: Finite element model of myocardial displacement (from Young et al, 1994).  

 

Several studies have suggested that longitudinal movement is the first motion to 

occur during cardiac contraction.  It has been documented that longitudinal fibers start to 

shorten before radial fibers, so both the onset of shortening and peak shortening occur in 
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the longitudinal direction before the radial direction47.  By M-mode echocardiography,  it 

has been shown that long axis shortening begins 25+/-40msec earlier than short axis 

shortening47, and that peak longitudinal velocity during systole occurs before peak radial 

velocity47.   

 

Radial Motion 

Radial motion describes the movement of the left ventricular walls toward and 

away from the center of the LV blood pool.  During systole, myocardial wall thickening 

occurs as the walls of the LV move toward the center of the blood pool.  The epicardial 

side of the LV experiences significantly less motion than the endocardial side, as 

thickening occurs primarily in the endocardial layers.  During diastole, the myocardial 

walls relax and return to their original thickness.   

Figure 2.3 shows an example of a radial velocity curve from a basal myocardial 

slice.  Motion toward the center of the LV blood pool during systole is seen as positive 

(A), while motion away from the center of the LV blood pool during diastole is seen as 

negative (B).  Note that the velocity magnitudes in the radial curve are significantly lower 

than that of the longitudinal curve shown in Figure 6.1.   

Radial displacement is fairly constant throughout the longitudinal length of the 

myocardium50.  It has been suggested that there is slightly less radial displacement in the 

septum than in any other myocardial region51, again on account of tethering effects from 

the right ventricle.   
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Figure 2.3: Radial velocity curve. 

 

Circumferential Motion (Myocardial Torsion) 

The twisting of the LV is the by far the most complex motion.  During systole, the 

LV creates a wringing motion with clockwise rotation at the base and counterclockwise 

rotation at the apex (when viewed from the apex)52-60.  Apical segments twist 

counterclockwise for the duration of systole55-57.  In basal segments, however, there is a 

transition from counterclockwise twist during early systole to clockwise twist during the 

remainder of systole54,57,61.  This transition from counterclockwise to clockwise twist in 

basal segments of the LV occurs between 45 and 60% of the duration of systole56.  

Young et al. noted that this reversal of twist occurred between the first and second frames 

in tagging studies (first frame =13msec after R-wave, and second frame 60-90 msec 

later)49.  Consistent with this finding is that in the present study, the reversal of twist was 

only documented in subjects who were imaged with a trailing navigator (first frame 26 

msec after detection of R-wave) and not those in whom images were imaged using a 
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leading navigator (first frame=74msec after R-wave detection).  During diastole, the 

twisting motion is reversed and a counterclockwise rotation is seen in the base and a 

clockwise rotation is observed in the apex 52-60.  There is no reversal of twist in basal 

slices during diastole.   

A transition from the rotation of basal slices to the rotation of apical slices occurs 

along the long-axis length of the LV.  Therefore, the pattern of twist within mid-

ventricular slices is less clearly defined; rotation of the mid-ventricular slices depends on 

location along the length of the LV.  However, it is generally acknowledged that mid-

ventricular segments experience decreased twist and primarily contract in the radial 

direction51,58.   

Figure 2.4 shows circumferential velocity curves from a basal slice imaged with a 

trailing navigator.  The initial counter-clockwise twist of the base was observed as a 

negative peak (A), peak velocity during systole is positive indicating a clockwise rotation 

(B), and diastolic relaxation is negative, indicating a counterclockwise rotation (C).  The 

reversal of twist seen during early systole (transition from A to B) can only be seen when 

images are acquired with a trailing navigator.   
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Figure 2.4: Circumferential velocity curve from a basal myocardial slice  

 

During systole, torsion develops within the left ventricle primarily during 

isovolumic contraction with minimal rotation during the ejection phase52,58,59,62.  

Similarly, diastolic untwisting occurs primarily during isovolumic relaxation, before 

diastolic filling begins52,58,59,62.  More specifically, it has been documented that over 80% 

of diastolic untwisting occurs during isovolumic relaxation (after aortic valve closure and 

before mitral valve opening)52,59,61-63.  Put another way, torsion decreases most sharply 

before mitral valve opening, whereas the length of the LV increases sharply after mitral 

valve opening, supporting the hypothesis that rapid untwisting of the LV is an important 

mechanism in generating a suction force instrumental to rapid filling62.  
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Figure 2.5: Dissociation between LV length and torsion (from Rademakers et al, 1992).   

 

Figure 2.5, which was taken from a 1992 Circulation paper  Rademakers et al.62, 

illustrates this dissociation between untwisting and lengthening in an apical slice of the 

LV during diastole.  The figure clearly shows that the change in torsion is almost 

inversely related to the change in LV length.  The figure only shows the period of 

diastole from just before aortic valve closure.  Isovolumic relaxation, the period between 

aortic valve closing (AVc) and mitral valve opening (MVO), is shaded.   

 

Methods to Assess Myocardial Motion and Dyssynchrony 

 Ultrasound imaging and Magnetic Resonance Imaging are two non-invasive 

methods currently available for the evaluation of myocardial motion.  Ultrasound has the 

advantages of being more cost efficient, portable, and better able to provide images 
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extremely rapidly.  However, it is not possible to obtain ultrasound images in all 

myocardial regions due to interference from the bones of the rib cage or the lungs.  

Magnetic resonance imaging has the advantage of being able to image the entire heart 

without the anatomical restrictions encountered by ultrasound, but MR imaging is much 

more costly, generally takes longer, and is not portable.   

 

Ultrasound Imaging 

Conventional echocardiography 

Echocardiography is a well-established clinical tool for the noninvasive assessment 

of regional and global LV function.  B-mode echocardiography is generally not used for 

quantitative evaluation of myocardial motion.  Echocardiographic methods for measuring 

LV dyssynchrony include M-mode measurement of the septal-to-posterior wall motion 

delay (SPWMD)64, Fourier phase angle analysis of wall displacement65, and calculation 

of regional fractional area changes using contrast imaging66.  The septal-to-posterior wall 

motion delay, SPWMD (defined as the delay between the motion of the septum and left 

posterior wall), was shown to be predictive of a positive clinical response to CRT 

(responders baseline SPWMD = 246+/- 68 ms, non-responders baseline SPWMD = 

110+/-55 ms, p<0.001) 29.  A SPWMD greater than 130ms could separate responders and 

non-responders with a specificity of 63%, a positive predictive value of 80%, and an 

accuracy of 85%; in contrast, the specificity of QRS duration for separating responders 

and non-responders in the same study was 13%, with a positive predictive value of 63% 

and an accuracy of 65%29.   
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Although these echocardiographic techniques have shown promise in better 

identifying asynchrony patients, they are restricted by the use of a single imaging plane 

and, therefore, do not quantify dyssynchrony throughout the entire ventricle45.  Three-

dimensional echocardiography and modeling can overcome this limitation67, but limited 

availability and the prolonged time required for image processing has, until very recently, 

limited clinical applicability. 

 

Tissue Doppler Imaging 

Tissue Doppler Imaging (TDI) is an ultrasound technique for the imaging of 

myocardial motion that relies on the principle of the Doppler effect: myocardial velocities 

are calculated based on the phase shift of the ultrasound signal reflected from the 

contracting myocardium.  While traditional Doppler flow studies acquire the high-

frequency, low-amplitude signals of flowing blood, TDI filters out these high frequency 

signals and focuses on acquiring the low-frequency, high-amplitude signals of the moving 

myocardium.  Using TDI, it is possible to obtain a time-varying velocity curve for a 

single ventricular wall at frame rates approaching 300 Hertz.  In this manner TDI can 

provide information on the magnitude and direction of myocardial motion.   

TDI has been used extensively to measure myocardial contraction and relaxation 

velocities in healthy volunteers68-70, and has also been used successfully to identify the 

presence of mechanical delays in dyssynchrony18,29,44,45,71-74.  Furthermore, several 

studies have been successful at identifying TDI motion parameters that separated 

responders from non-responders based on data acquired prior to device implantation.   

Most TDI measurements of dyssynchrony are based on differences in time-to-peak 

systolic myocardial velocity between two or more walls of the LV.  For example, a 
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septal-to-lateral delay (the difference in time-to-peak-systolic velocity between the septal 

and lateral wall) greater than 60ms predicted response to CRT with a sensitivity of 76% 

and a specificity of 88%75.  Peak velocity difference (MaxDiff)—defined as the 

difference between the longest and shortest time-to-peak velocity across six regions 

(septal, lateral, inferior, anterior, anteroseptal, and posterior) of the left ventricle—greater 

than 65msec was able to separate responders from non-responders with a sensitivity of 

78% and a specificity of 33%76.  LV dyssynchrony—defined as the maximum delay 

between peak systolic velocity in four basal ROIs (anterior, inferior, septal, and lateral)—

separated responders and nonresponders with a sensitivity and specificity of 92% when a 

cutoff value of 65msec was used 24.   

Yu et al. extended this “time-to-peak” analysis by looking at variation in time-to-

peak systolic velocity (Ts) and the standard deviation of this time-to-peak velocity (Ts-

SD) in six basal and six mid-segmental myocardial regions as a measure of 

dyssynchrony71,77.  Yu et al reported that the baseline Ts was significantly different for 

responders and nonresponders (responders = 45.0 +/-8.3ms, non-responders = 24.8+/-

4.5ms, p<0.001) 18,71,77.  By quantifying Ts-SD in 88 normal subjects and taking the mean 

(17ms) plus two standard deviations (2 * 7.8 = 15.6ms) of Ts-SD in these normals, Yu et 

al determined a threshold value of 32.6 ms could be used to diagnose LV dyssynchrony78.  

However, multiple threshold values for Ts-SD dyssynchrony have been reported by Yu et 

al:  the authors used a threshold of 31.4 ms to predict response to CRT with a sensitivity 

of 96% and a specificity of 78%79, and in a different population of patients, a threshold of 

34.4 ms was used to predict response to CRT with a sensitivity of 87% and a specificity 

of 81%80.   

Recently, several extensions of TDI imaging have been developed, including 

tissue displacement imaging and tissue synchronization imaging.  The theory behind 
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tissue displacement imaging is that a delay in time-to-peak tissue displacement may be 

more sensitive at identifying dyssynchrony than a delay in time-to-peak tissue velocity.  

TDI velocity data is acquired normally, and then tissue displacement is calculated from 

the underlying TDI velocity data by integration81,82.  While some differences have been 

shown in the timing of displacement curves between normal volunteers, LBBB patients, 

and idiopathic dilated cardiomyopathy patients, no single parameter was able to clearly 

separate the three groups81,82.  Tissue synchronization imaging (TSI) also uses underlying 

TDI velocity data, but applies post-processing in real-time to display the time-to-peak 

velocity as a color-coded readout.  Response to this technology has been mixed, with 

some groups claim that TSI provides a useful display of dyssynchrony and makes it 

easier to identify delayed regions, and other claiming that the additional post-processing 

of TDI data fails to provide any additional benefit83-85.  

It has been suggested that current guidelines for patient selection for CRT should 

be expanded to include TDI assessment of LV dyssynchrony44.  However, a recent study 

showed that the most commonly used TDI dyssynchrony parameters agree on a diagnosis 

of dyssynchrony only half the time86.  Thus, despite the success of TDI parameters in 

predicting response to CRT in small, single-center studies, there is a lack of consensus on 

exactly which parameters should be used in assessing LV dyssynchrony.   

In summary, Tissue Doppler Imaging has demonstrated that there are differences in 

the myocardial contraction pattern between responders and non-responders prior to 

device implantation and that some of these differences can be used to separate responders 

and non-responders.  These findings support the idea of using baseline motion parameters 

to select patients for CRT.  However, TDI suffers from some significant limitations: First, 
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TDI can only retrieve velocity information for objects moving directly toward or away 

from the transducer, meaning that velocity information is only available for a single 

direction.  Secondly, the acquired velocities are limited to regions that can be accessed 

through the echocardiographic window of the torso.  Therefore, TDI is only able to 

retrieve local long-axis velocities for regional areas of the myocardium, usually near the 

base of the ventricles.  While this information is useful, it is far from a complete 

description of myocardial motion.  Thirdly, the poor reproducibility of TDI parameters 

may limit their clinical utility.   

 

Magnetic Resonance Imaging  

 There are two categories of MR methods available for the assessment of 

myocardial motion: tissue tagging techniques and phase contrast techniques.  In MR 

tissue tagging a series of signal voids is applied to the tissue prior to imaging, and the 

deformation of the tags is tracked throughout the cardiac cycle.  Phase contrast imaging 

encodes myocardial motion or deformation within the spins of the myocardial tissue.  

 

Magnetic Resonance Tissue Tagging 

During myocardial tissue tagging, a series of presaturation planes are placed 

within the myocardium prior to MR imaging87,88.  These planes effectively eliminate the 

MR signal from tissue and create a series of signal voids.  Depending on the orientation 

and quantity of presaturation planes applied, either dark bands or grids will appear across 

the image.  Presaturation affects the spins of hydrogen atoms within the myocardial tissue 



www.manaraa.com

 25 

and is a property of the myocardial tissue itself.  Therefore, changes in the shape of the 

presaturation pattern mirror changes in the shape of the underlying tissue87,89.  If the 

myocardium is imaged after application of the presaturation pattern, the lines or grids will 

appear on the image.  If a cine acquisition is used, deformation of the presaturation 

pattern throughout several time points within the cardiac cycle can be seen.  During post-

processing, deformation of the areas of presaturation can be tracked throughout the 

cardiac cycle to quantify myocardial tissue motion.  Since the presaturation pattern can be 

applied in any direction and prior to any imaging sequence, the technique is very 

versatile.   

Figure 2.6 shows an example image of myocardial tagging applied to the 

myocardium.  Two sets of parallel tags are laid during late diastole before cardiac 

contraction begins (Figure 2.6A).  Figure 2.6B shows how the tags within the 

myocardium deform with systolic contraction, but tags in regions without motion (such 

as the chest wall) remain parallel.  Tags begin to fad early in diastole, making 

quantification of diastolic movement challenging, Figure 2.6C.  At end-diastole, the 

location of tag intersections is difficult to determine, Figure 2.6D.   

 

Figure 2.6:  Example tagged MR image of the contracting myocardium.   
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However, tissue tagging also has several limitations.  As mentioned previously, 

the tag lines are dependent on the spins of individual hydrogen atoms within the 

myocardial tissue, so they fade as a result of T1 relaxation88.  This makes it difficult to 

image diastolic events, particularly in subjects with low heart rates.  In addition, the 

spatial resolution of the derived deformation data is limited by the number of tag 

intersections.  Since tagging planes are usually between 5 and 7mm apart, motion 

information is only available for one or two material points in the myocardial wall.  In 

addition, a major drawback of tagged MRI images has been the lengthy post-processing 

time.  Historically, tagged MRI images have been analyzed by tracking the location of tag 

intersections over time, which is a tedious, time-consuming process that has been difficult 

to automate.  Therefore, it can take up to one week to analyze data from a single imaging 

session90.  Another drawback of tagged MRI is that images give information about either 

a single direction of motion (if parallel tags are used) or about both in-plane directions (if 

grid tags are used).  However, without an additional image acquisition perpendicular to 

the first, tagging cannot provide any information about the third direction of motion.   

 Attempts have been made to utilize tagged MRI image data as a means of 

quantifying dyssynchrony, but these studies have been preliminary and have been limited 

by the large amount of post-processing time required to quantitatively interpret tagged 

MRI images.  Based on tagged MRI data from mongrel dogs, Leclercq et al showed that a 

positive response to biventricular pacing was more dependent on the uniformity of 

mechanical activation in the circumferential direction than electrical depolarization 

within the ventricle43.  While this result is interesting and appears to support the current 

ideology of decoupling between electrical depolarization and mechanical activation, the 

limitations of the tagged MRI data meant that no information was available about 

mechanical activation in the longitudinal direction and limited information was available 

in the radial direction.   
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Harmonic Phase (HARP) Analysis of tagged MR images 

Harmonic Phase (HARP) analysis of tagged MR images has recently been 

developed in an effort to reduce the amount of time-consuming post-processing necessary 

to interpret tagged MRI images.  Instead of relying on user input to track the movement 

of tag intersections in the time domain, HARP determines cardiac motion by using a 

bandpass filter to isolate spectral peaks of the tagged images in the Fourier domain91.  

The inverse Fourier transform of the bandpass region yields a complex harmonic image, 

the magnitude of which shows changes in the geometry of the heart and the phase of 

which gives detailed information regarding myocardial motion92.  From the phase of this 

harmonic image, the HARP algorithm is able to calculate radial and circumferential strain 

within the myocardium.   

The clear advantage of HARP is that tagged MR images can be rapidly and 

automatically processed.  Furthermore, because HARP computes deformation from the k-

space information of the image, the spatial resolution of the computed strain data is 

dependent on the size of the k-space filter, not on the frequency of tag spacing91.  

However, there are several drawbacks to the HARP algorithm.  First, HARP is based on 

the analysis of 2D tagged images; since cardiac motion is three-dimensional, the derived 

motion parameters represent the projection of the true 3D motion onto a 2D plane92.  

Second, although HARP should be able to extract both radial and circumferential strain 

information from the tagged MR images, in practice, the radial strain measurements are 

often noisy and difficult to interpret.  Thirdly, it is important to keep in mind that the 

HARP algorithm can only be used to extract myocardial strain, not velocity or 

displacement, from the tagged MR image.   
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Magnetic Resonance Phase Velocity Mapping (MR PVM) 

Magnetic Resonance Phase Velocity Mapping (MR PVM) is a phase-contrast 

imaging technique based upon the principle that spins moving inside of a magnetic field 

accumulate a net shift in phase relative to stationary spins93-96.  If acceleration is assumed 

to be constant, the change in phase of the moving spins is proportional to velocity94.  

However, phase is also affected by many other phenomena, including pulse sequence 

timing, magnetic field inhomogeneities, radio-frequency effects, magnetic field eddy 

currents, and motion in other directions besides the one being studied93.  Therefore, a set 

of two images is needed to gather data for each velocity-encoded direction.  A reference 

phase image is acquired first, and then the first moment of the gradient waveform (which 

is sensitive to motion) is modified for the acquisition of the second image.  Both images 

contain all of the unwanted phase effects, but each image has a different phase shift due 

to motion in the velocity-encoded direction.  Subtraction of the two images yields a phase 

difference image in which the magnitude of the phase shift is directly related to velocity 

in the encoded direction94.  The result is an image in which the intensity of each pixel 

corresponds directly to velocity in the given direction.  Through a total of four 

acquisitions (a reference scan and three orthogonal velocity scans), three-dimensional 

velocity information can be acquired.  The resulting three velocity images (Vx, Vy, and 

Vz) provide a complete description of myocardial motion.  

In the PVM images, objects moving in the direction of positive velocity appear 

light, while objects moving in the direction of negative velocity appear dark.  The 

directions of positive and negative velocity are determined by the orientation of the slice 

and the velocity-encoded direction.  Static structures experience no phase shift in the 

difference image and appear gray.  Figure 2.7 shows an example MR PVM image of the 

thru-plane motion of a basal myocardial slice throughout the cardiac cycle.   
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Figure 2.7:  Example MR PVM image.  

 

Several features of phase velocity mapping make it especially well-suited for 

imaging the mechanical delay of dyssynchrony.  In contrast to echocardiography, MR 

PVM is not limited by the acoustical windows of the chest and can acquire 

multidirectional velocity information throughout the entire myocardium.  In addition, 

velocity information is acquired for each voxel within the image at the same spatial 

resolution as the magnitude image.  Therefore, PVM is able to provide a complete three-

dimensional description of myocardial motion for the entire heart.  This allows for the 

analysis of three-directional motion on a pixel-to-pixel basis, making it possible to 

accurately quantify the location and extent of the mechanical contraction delay present in 

dyssynchrony.  

 

Displacement Encoded Imaging (DENSE) 

Displacement Encoding with Stimulated Echos (DENSE) is another MR phase 

contrast method for the measurement of myocardial motion.  DENSE imaging uses the 
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same principles of encoding motion within myocardial spins as MR PVM, but with 

DENSE, the phase of each pixel is modulated according to its position rather than its 

velocity97.  Like MR PVM, DENSE provides motion information for each pixel within 

the image.  The main distinction between DENSE and MR PVM is that DENSE usually 

generates only a single displacement image (usually for an end-systolic frame relative to 

an end-diastolic frame) throughout the cardiac cycle98.  The advantage to this approach is 

that the displacements encoded by DENSE are larger than those encoded with MR PVM, 

so contrast is increased and lower gradient strengths are required97.  Furthermore, the 

measured displacements can be used to directly compute intra-myocardial strains89 99.  

The clear disadvantage is the low temporal resolution, meaning that much less that data is 

generated throughout the cardiac cycle.   

 

Methods to Analyze Cardiac Motion 

In addition to the direct visualization of the myocardial motion data acquired with 

MR and echocardiography, several post-processing methods exist to extract additional 

information from the acquired data.  Included in this software are methods to follow 

individual regions of myocardial tissue throughout the cardiac cycle and methods for the 

computation of myocardial strain and strain rate.   

 

Tissue Tracking 

Accurately describing the motion of the myocardium requires knowledge 

regarding the motion of individual regions of the myocardium over time.  However, this 
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information is difficult to obtain because contraction of the left ventricle during systole is 

complex, involving shear, twist, and long-axis displacement.  The long-axis motion of the 

left ventricle is especially significant, with estimates of long-axis displacement at the 

base of the ventricle in the range of 10mm-14mm49.  Since slice thicknesses of between 5 

mm and 10 mm are routinely used in cardiac imaging studies, long axis motion becomes 

especially problematic when short axis slices of the myocardium are taken; in a short axis 

slice of the heart, long-axis motion causes the myocardium visualized within the slice 

thickness to vary throughout the cardiac cycle100.  Following the trajectory of an 

individual region of myocardium becomes difficult because a different section of the 

heart is visualized in each phase of the cardiac cycle.   

Motion tracking techniques are necessary to follow the motion of individual 

regions of myocardial tissue throughout the cardiac cycle.  A method for tracking 

individual particles from MRI phase velocity data was described in 1995 by Pelc et.al100.  

The idea underlying the tracking method is that the location and three-dimensional 

velocity of a pixel in one frame can be used to compute its location in the next frame.  

The assumption is made that myocardial motion is periodic, and the restriction is imposed 

that any given region will always returns to its end-diastolic starting point.  This allows 

motion to be estimated by either a forward or a backwards integration algorithm, with the 

forward integration determining where the pixel is going, and the backwards integration 

determining where the pixel came from.  The error in the forward integrated trajectory is 

greatest at the end of the cardiac cycle, while the error in the backwards-integrated 

trajectory is greatest at the beginning of the cardiac cycle.  Since myocardial motion is 

periodic, the two trajectories can be combined via a weighting term that is dependent on 
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the cardiac phase to produce a more accurate trajectory100.  This simple motion tracking 

technique has been verified to be accurate with errors of less than 1mm in both a phantom 

model and in vivo100.   

It is important to note that this tissue tracking algorithm can only be implemented 

using MR PVM velocity data.  MR PVM is the only myocardial motion imaging 

technique that provides velocity information with high enough spatial and temporal 

resolution to track individual regions of the myocardium and examine intra-myocardial 

motion.  Velocity data sets from TDI and tagged MR are incomplete (TDI usually only 

contains information for long-axis motion, while tagged MR only provides information 

about the two in-plane directions).  Velocity data extrapolated from MR tagging 

algorithms also has extremely poor spatial resolution, usually only providing information 

for one or two points within the thickness of the LV wall, and, when processed using the 

HARP algorithm, provides strain, not velocity information.  Although DENSE data is of 

sufficient spatial resolution, the temporal resolution is often poor or the signal is low.   

 

Strain and Strain Rate 

Strain (ε) and strain rate (SR) are measures of myocardial contractility.  Strain is 

defined as the deformation of an object normalized to its original shape, and SR is the 

speed at which that deformation occurs101.  Since strain and SR are not affected by 

contractile function in adjacent myocardial regions, they are more direct measures of 

regional myocardial function than tissue velocities102.  Both strain and SR are able to 

non-invasively determining regional contractility and differentiate between actively 



www.manaraa.com

 33 

contracting and passively tethered myocardium.  SR imaging by ultrasound has 

demonstrated the ability to differentiate between ischemic and non-ischemic 

myocardium103,104, and when used in combination with dobutamine stress testing, has 

been able to differentiate between stunned and ischemic myocardium105-107.   

Peak radial strain values are approximately twice the magnitude of peak 

longitudinal strain values108, and peak radial SR are significantly larger than peak 

longitudinal SR values109, arguably making radial motion the largest contributor to 

ejection fraction.  It has been demonstrated that during ischemia, radial motion 

abnormalities are detectable before longitudinal or circumferential motion 

abnormalities106.  Furthermore, it has been shown that radial dyssynchrony (defined as 

the standard deviation of time-to-peak in six basal segments) is associated with depressed 

LV function and that radial dyssynchrony greater than 130 msec is predicative to acute 

response to CRT110,111.   

Although the applications of strain and SR imaging have been promising, 

myocardial strain and SR, and radial strain and SR in particular, continue to be difficult 

quantities to measure in-vivo.  SR is a particularly elusive quantity, as two derivatives (one 

spatial and one temporal) are required to extract this value from displacement data such as 

ultrasound speckle tracking or MR tagging112.  Since each derivative introduces additional 

noise into the signal, SR curves have often been difficult to interpret.   

Measuring SR from Tissue Doppler velocity data has been proposed as a way of 

overcoming this limitation.  By this method, SR is computed as the spatial gradient of 

velocity, and strain in computed as the temporal integral of the SR values101.  This method 
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has been successfully applied to measure longitudinal strain and SR within the 

myocardium101,108,113.  However, ultrasound studies are restricted by the angle of the 

ultrasound beam to measuring radial strain only within the posterior wall in mid and basal 

slices101,103.  MR PVM tissue velocity measurements offer the ability to overcome this 

limitation.  Since MR PVM is able to acquire three-dimensional velocity information 

throughout the entire myocardium, it is possible to compute radial SR for every region 

within the myocardium.  Since SR is computed directly from velocity measurements, and 

SR is integrated to compute strain, strain and SR values computed using this method have 

some potential signal-to-noise advantages.  Furthermore, the high spatial resolution of the 

underlying MR PVM velocity data offers the possibility of differentiating between 

endocardial and epicardial strain and SR values.   

 

Summary of Background 

Cardiac Resynchronization Therapy (CRT) has been proven as an effective 

treatment option for heart failure patients with dyssynchrony who are at optimal medical 

management.  Patient selection criteria for CRT have been based primarily on the presence 

of a prolonged QRS interval on a surface electrocardiogram.  Although most patients 

selected for CRT by this method almost immediately experience clinical improvement after 

device implantation, up to 30% of patients implanted with a CRT device do not see any 

benefits.  Many unsuccessful attempts have been made to identify differences in clinical 

parameters between these responders and nonresponders.   
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Recently, Tissue Doppler imaging has suggested that one of the best predictors of 

response to CRT is the level of underlying mechanical dyssynchrony in the myocardial 

wall prior to CRT.  As a result, there has been growing interest in direct imaging of the 

myocardial wall.  Because myocardial contraction is a complex, three-dimensional 

movement involving longitudinal and radial shortening, torsion and shear, providing an 

accurate picture of myocardial wall motion can be challenging.  Echocardiography initially 

emerged as the modality of choice, but the long list of limitations (limited 

echocardiographic windows, one direction of motion, poor reproducibility) has fostered 

interest in exploring the use of MR for myocardial wall imaging.  Even though MR 

presents some unique drawbacks (expensive equipment, longer imaging times), it is able to 

overcome many of the limitations of TDI.  In particular, Phase Velocity Mapping (MR 

PVM) can provide a complete, three-directional description of motion throughout the entire 

myocardial wall at high spatial and temporal resolution and may present an advantage over 

TDI in identifying and quantifying mechanical dyssynchrony in the myocardial wall.   
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CHAPTER 3 

AIM1: DEVELOPMENT OF IMAGING PROTOCOL AND 

ANALYSIS SOFTWARE FOR MR PVM TISSUE VELOCITY 

IMAGES 

 The goal of this specific aim was to develop the MR PVM scan protocol for the 

acquisition of myocardial tissue velocities and the image processing software for the 

acquired velocity data.  The developed protocols were applied to all collected datasets 

throughout the remainder of the project.    

 

MR PVM Tissue Velocity Scan Protocol 

 All MR imaging was performed on a Philips Medical Systems Intera CV scanner 

using a 5-element phased array cardiac coil (Phillips Medical Systems, Best NL).  Design 

of the MR PVM protocol began with a segmented, ECG-triggered, gradient-echo phase 

contrast sequence in which all three directions of velocity were acquired.  Raw data was 

saved, and a separate delayed reconstruction was needed to extract velocity information 

in each direction.  (This limit was imposed by the image reconstruction algorithm on the 

scanner, not the pulse sequence itself).  Several other parameters, including navigator 

placement, interleaving of velocity directions, reconstruction filters, rest slabs, velocity 

encoding value, and Sensitivity Encoding (SENSE) were considered in determining the 

final velocity acquisition protocol.  
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Navigator Placement 

Navigator-echo gating enables the acquisition of velocity data within the 

myocardium without the need for breath-holding114-116.  A navigator-echo placed on the 

diaphragm at the lung-liver interface monitors the position of the diaphragm.  This 

provides real-time monitoring of respiratory motion and can be used to gate image 

acquisition.  The combination of navigator-echo gating with three-directional phase 

velocity imaging allows myocardial tissue velocity data to be acquired in patient 

populations with a limited breath-hold capability and ensures that measurements from all 

three velocity directions are correctly registered for post-processing.   

The execution of the navigator is shown in Figure 3.1.  The navigator is the green 

rectangle placed at the lung-liver interface on the MR image at the left.  The red dots in 

the figure on the right represent the position of the lung-liver interface over time.  An 

acceptance or “gating window” is chosen, and image data is only retained when the 

diaphragm is within this acceptable window.  The green dots in Figure 3.1 each represent 

a point in time in which the acquired velocity data was accepted.   

 

Figure 3.1: Navigator Echo Gating 
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The navigator pulse takes approximately 75msec to execute and can be placed 

immediately after detection of the R-wave (leading navigator) or during end diastole 

before the detection of the subsequent R-wave (trailing navigator).  The purpose of this 

study was to determine whether a leading or a trailing navigator would be more suited for 

use with the MR PVM sequence for the measurement of myocardial tissue velocities.   

The study population was a group of five normal volunteers.  In all five 

volunteers, MR PVM velocity data was acquired with both a leading and a trailing 

navigator within the same scan session.  For each acquired dataset, curves of velocity 

over time in 8x8mm regions of interest (ROIs) were generated in the septal, lateral, 

anterior, and inferior walls. 

Typical longitudinal velocity curves acquired with leading and trailing navigators 

are shown in Figure 3.2.  Curves were generated from the lateral wall ROI in the same 

volunteer.  Note that the trailing navigator curve begins at zero velocity (i.e. before 

systolic contraction has begun), while velocity data for the leading navigator curve begins 

after the heart has begun to contract.  Also, note that the initial data point in the leading 

navigator curve has a large velocity offset (depicted by the red arrow in Figure 3.2).  Also 

of importance is that velocity curves from both leading and trailing navigators are able to 

fully capture diastolic relaxation, and that both curves return to zero at the end of the 

cardiac cycle.   

 

 



www.manaraa.com

 39 

 

 

Figure 3.2: Velocity curves from leading and trailing navigators.   

 

 

Based on the above findings and the fact that end-diastole is a relatively quiet 

period during which the heart undergoes very little motion, a trailing navigator was 

chosen for the acquisition of MR PVM velocity data.  The trailing navigator enabled the 

acquisition of velocity information throughout the entire active part of the cardiac cycle, 

including the first 100 msec of early systole that would have been missed with a leading 

navigator, but still was able to sufficiently capture all of diastolic relaxation.   
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Velocity Interleaving 

 When multiple directions of velocity are acquired, Release 11 of the Philips Intera 

software allows the multiple directions of velocity to be interleaved either by TR or by 

heartbeat during acquisition.  Figure 3.3 illustrates the differences in the two techniques 

for a segmented, ECG-gated sequence that employs rest slabs and a trailing navigator.  

During each cardiac phase (P), a rest pulse is executed (rest), and 3 lines of k-space are 

acquired (k1, k2, k3).  Interleaving velocities by heartbeat means that information for 

different velocity directions (Vx, Vy, Vz, and reference) is acquired in separate 

heartbeats.  This allows velocity data to be acquired at high temporal resolution, but 

introduces the possibility of errors, as the reference and velocity directions are acquired 

in different heartbeats.  Interleaving velocities by TR means that information for all 

encoded velocity directions is acquired in each heartbeat.  Since the reference and 

velocity data are acquired in close succession, the probability of introducing errors into 

the velocity data is reduced.  However, less data is able to be acquired and the temporal 

resolution of the acquired velocity data is reduced.  

For the MR PVM velocity acquisition sequence where encoding is performed for 

n velocity directions, the effective frame-to-frame temporal resolution for velocities 

interleaved by heartbeat is the sequence TR; that temporal resolution is reduced to 

(n+1)*TR when velocities are interleaved by TR.  So if it were possible to acquire 

velocity at 12 cardiac phases with velocities interleaved by heartbeat, it would only be 

possible to acquire 3 cardiac phases with velocities interleaved by TR.  Also important to 

note is that changing the velocity interleaving from heartbeat to TR decreases the 

imaging time four-fold (because only ¼ as much data is acquired).   
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Figure 3.3: Different modes of velocity interleaving 

 

 Since the objective of this project was to investigate myocardial motion in detail, 

high temporal resolution was extremely important.  Therefore, in the final protocol, 

velocity directions were interleaved by heartbeat.  Although this significantly increased 
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the time necessary for velocity acquisition, the acquired velocity data contained the 

necessary detailed myocardial motion information.  

 

Velocity Encoding Value (Venc) 

The velocity encoding value, or Venc, is the largest phase shift that the sequence 

can measure without aliasing.  Accurately imaging the lower velocities of myocardial 

tissue requires selecting a Venc value that is significantly lower than is used for blood 

flow imaging.  However, imaging with lower Venc values requires higher gradients, 

which require longer echo times and higher bandwidths.  Therefore, selecting the 

appropriate Venc value is a compromise between sensitivity in the detection of desired 

velocities (which requires the smallest Venc possible) and imaging time and readout 

bandwidth, which increase with decreased Venc.  

The purpose of this study was to determine the optimal Venc value for imaging 

myocardial motion.  Venc values of 20, 30, and 40cm/s were considered.   

Because of the increased bandwidth and longer echo times associated with 

smaller Venc values, the lowest Venc value (20cm/s) often led to artifacts within the 

myocardium.  These image artifacts were seen primarily within the lateral and inferior 

walls, and may have been caused by phase susceptibility of deoxygenated blood in the 

great cardiac vein or the heart-lung interface117,118.  Artifacts are denoted in Figure 3.4 by 

an arrow.  Increasing the Venc value from 20cm/s to 40cm/s eliminated the artifacts.  (All 

other scan parameters were held constant for the two acquisitions shown).   
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Figure 3.4: Effects of Venc on MR PVM images of myocardial tissue.   

 

In the final protocol, a Venc value of 30cm/s was selected as a compromise.  This 

shorter echo time eliminated the artifacts within the myocardium, but was still sufficient 

to accurately measure lower myocardial velocities.   

 

Reconstruction Filters 

 By default, Intera Release 11 software automatically applies several post-

processing filters to phase contrast images.  These filters are intended to ease 

interpretation of velocity images.  Of particular interest to myocardial velocity imaging 

are the Noise Clip Filters and Local Phase Correction (LPC) filters.   

The Noise Clip Filters are a multiplication factor for the calculated noise 

threshold.  During image reconstruction, a background noise threshold is calculated for 
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the entire magnitude image, and this value is multiplied by the Noise Clip Filters.  During 

execution of this filter, image pixels below the noise threshold in the phase image are 

forced to zero.  The LPC filters provide background phase correction for phase contrast 

(PC) and quantitative flow data (QF).  The QF LPC and PC LPC values specify the size 

of the local phase correction window for the two image dimensions.   

The purpose of this study was to determine the effect of the Noise Clip Filters and 

the phase contrast (PC) and quantitative flow (QF) local phase correction (LPC) filters on 

the imaging of myocardial velocity with the MR PVM sequence.  

It was discovered that the automatic execution of the Noise Clip Filters can 

obscure myocardial tissue velocity measurements by suppressing low velocity values 

from within the heartwall.  Since increasing the value of the Noise Clip Filter increases 

the noise threshold, setting the value of the Noise Clip threshold as close to zero as 

possible minimizes the effects of this filter.  Since the filter cannot be set to zero 

completely (this is not an option with the current software), values of 0.01,0.01,0.01 were 

selected in the final protocol.  Figure 3.5 shows the effects of the Noise Clip Filters on 

myocardial velocity data.  When the filter is left on, velocity in the lungs and outside of 

the chest wall is forced to zero and appears as a uniform gray color.  However, velocity 

values in some regions of the myocardium (shown with an arrow) are also forced to zero.  

When the filter is turned off, the lungs and the area outside of the chest wall appear as 

salt and pepper noise, but the signal from the entire myocardium is preserved.  As is 

clearly visible from Figure 3.5, the Noise Clip Filters need to be turned off in order to 

accurately measure myocardial tissue velocities with the MR PVM scan.  
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Figure 3.5: Effect of the Noise Clip Filters on myocardial velocity data.   

 

The Quantitative Flow Local Phase Correction (QF LPC) and the Phase Contrast 

Local Phase Correction (PC LPC) filters produced inconsistent results when applied to 

myocardial velocity datasets.  In some datasets the LPC filters helped to reduce 

background phase velocity offsets, but in other datasets the same filters offset velocity 

curves within the myocardium so that they did not begin and end at zero velocity.  

Because a detailed description of how these filters were executed in the Intera Release 11 

software could not be obtained, and any patterns could not be found describing when they 

were helpful and when they were not, the LPC filters were turned off (values of 0,0) in 

the final velocity acquisition protocol.  As a substitute, background phase offset 

correction was performed manually using an in-house developed Matlab algorithm (the 

algorithm is described in detail later in this chapter).   
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Presaturation Slabs 

 Presaturation slabs can be placed on either side of the imaging slice to null signal 

from inflowing blood119.  Presaturation slabs apply a 90 degree pulse to an area adjacent 

to the imaging slice.  This pulse nulls the MR signal from blood as it enters the imaging 

slice, thus creating a signal void within the myocardial bloodpool and increasing contrast 

between blood and myocardial tissue.  However, the execution of presaturations slabs 

decreases the frame-to-frame temporal resolution of the acquired velocity data and 

increases the total imaging time.  

The purpose of this study was to test whether rest slabs were necessary in the MR 

PVM sequence or if adequate image quality could be obtained without them.   

 When rest slabs were present, there was no signal from the blood pool, and the 

boundaries of the myocardium were clearly delineated on the velocity images.  Without 

the rest slabs, the myocardial bloodpool retained its signal and appeared bright on the 

magnitude image.  This made it difficult to distinguish between blood and myocardial 

tissue.  Furthermore, the large phase shift from the inflowing blood caused significant 

artifacts in the velocity images, both during systole and diastole.  

Figure 3.6 illustrates the effect of rest slabs on myocardial velocity images. All 

images are from the same patient and were acquired within the same imaging session.  

Aside from the presence of rest slabs, all imaging parameters remained constant for the 

two acquisitions.  When rest slabs were used, the LV bloodpool has no signal and appears 

a dark on the magnitude image and as noise in the velocity images.  Without the rest 

slabs, the bloodpool retains its signal and appears light in the magnitude image, making it 



www.manaraa.com

 47 

more difficult to distinguish between blood and myocardial tissue.  Furthermore, the large 

phase shift from the blood causes signal loss and artifact in the myocardium in the phase 

image (denoted with arrows on the phase images).   

 

Figure 3.6:  Effect of rest slabs on myocardial velocity data.  

 

The clear conclusion was that rest slabs are necessary when imaging myocardial 

tissue velocities.  In the final protocol, we elected to employ two parallel rest slabs, one 

on each side of the imaging slice.   

 

Sensitivity Encoding (SENSE) 

Sensitivity Encoding, or SENSE, is a parallel imaging technique that can be 

employed with phase velocity mapping to reduce total scan time120.  The acceleration in 
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imaging time is accomplished by under sampling k-space and using sensitivity 

information from multiple imaging coils during image acquisition.  However, because 

less data is acquired, images acquired using SENSE have a lower signal-to-noise ratio 

and suffer some other problems of aliasing during “unfolding” of the image during 

reconstruction.   

The purpose of this study was to test the feasibility of using SENSE with the MR 

PVM sequence.  

A small study with five normal volunteers was performed.  Volunteers underwent 

two myocardial velocity acquisitions with the MR PVM sequence in a single scan 

session, one without SENSE, and the other with a SENSE factor of two.  All other 

imaging parameters were held constant for the two scans.  After acquisition of images, 

longitudinal velocity was measured in four 8x8mm regions of interest within the 

myocardium (in the septal, lateral, anterior, and inferior walls).  A Bland-Altman analysis 

was conducted to quantitatively compare myocardial velocities acquired with SENSE and 

without SENSE.   

Curves of velocity collected in the lateral ROI of a normal volunteer with and 

without SENSE are shown in Figure 3.7.  Note that the curves collected with and without 

SENSE are nearly identical.   
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Figure 3.7:  Velocity curves with and without SENSE.  

 

 The Bland-Altman analysis determined that the mean difference between velocity 

curves acquired with SENSE and without SENSE was -0.01 +/- 3.5 cm/s.  The Bland-

Altman plot of the data from all five volunteers is shown in Figure 3.8.  Although the 

mean difference between SENSE and non-SENSE was close to zero (mean difference=-

0.01 cm/s), the standard deviation was not insignificant (stdev=3.5cm/s).   

 

Figure 3.8:  Bland-Altman of velocity acquired with and without SENSE.    
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 As expected, the introduction of SENSE decreased image quality and made the 

images more susceptible to foldover artifacts.  Foldover artifacts were often seen in the 

center of the image, right at the location of the myocardium, thus making interpretation of 

myocardial velocity impossible.  Figure 3.9 shows an example of such a foldover artifact.  

The area of the chest wall denoted by the arrow in the nonsense image appears within the 

center of the myocardium when SENSE is employed, making interpretation of 

myocardial velocities in the SENSE image extremely difficult.   

 

 

Figure 3.9: MR PVM images acquired with and without SENSE.   

 

Due to the frequent presence of foldover artifacts within the myocardium, SENSE 

was not employed in the final imaging protocol.  However, it is entirely possible that 

SENSE may have been successfully used if care was taken to avoid any foldover 

artifacts.   
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Final Velocity Imaging Protocol 

 The final velocity imaging protocol was based on results from all the above 

experiments.  Three-directional myocardial velocity was acquired using an ECG-gated, 

segmented (3 lines of k-space per shot), gradient echo phase contrast sequence121  In an 

effort to obtain velocity information for multiple areas of the left ventricle, velocity was 

acquired at three short axis slices (slice thickness = 10mm, slice gap=10mm), planned 

during systole so that myocardial tissue remained in the most basal slice throughout the 

entire cardiac cycle.  Velocity encoding was performed in a Hadamard fashion using 

four-point velocity vector extraction with encoding for different directions interleaved by 

heartbeat122.   

A schematic of the pulse sequence is shown in Figure 3.10.  For each velocity 

direction (Vx, Vy, Vz) and the reference scan, myocardial velocity was acquired at 

multiple phases (P1,P2,P3….Pn) throughout the cardiac cycle.  During each cardiac phase, 

a rest pulse was executed (rest), and three lines of k-space were acquired (k1,k2,k3).  The 

X,Y,Z, and RF channels demonstrate gradient and RF activity during the acquisition of 

each k-space line.   

 Acquisition parameters were as follows: in-plane resolution=1.4 mm (scan matrix 

= 144, reconstructed to 256), slice thickness=10mm, velocity encoding value=30cm/sec, 

flip angle=15 degrees, FOV=370mm, TR=shortest, and TE=shortest.  SENSE was not 

employed.  Parallel presaturation slabs (each 30mm thick, placed 10mm away from the 

imaging slice) were used to null signal from inflowing blood123,124.  A trailing navigator 

with an acceptance window of 6mm was placed on the diaphragm at the lung-liver 
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interface to monitor respiratory motion.  The navigator pulse was played out during end-

diastole and took approximately 74 msec to execute.  LPC and QPC filters were turned 

off (values set to 0,0) prior to acquisition.  Noise clip filters were also turned off (value 

set to 0.01,0.01,0.01).  The first velocity frame was acquired 15 msec after detection of 

the R-wave, and the frame-to-frame temporal resolution was between 26 and 35msec, 

depending on the orientation of the imaging slice.  Total acquisition time for the velocity 

encoding scan at three myocardial slices was four and a half minutes with a navigator 

efficiency of 100%; actual scan time depended on navigator efficiency, which ranged 

between 30 and 80%.   

 

Figure 3.10:  Schematic of the final MR PVM sequence.    



www.manaraa.com

 53 

An example image showing the acquired three-directional velocity maps at a 

single cardiac phase is shown in Figure 3.11.  Figure 3.11A shows the magnitude image, 

Figure 3.11B shows the phase velocity map of left-to-right motion, Figure 3.11C shows 

the phase velocity map of anterior-to-posterior motion, and Figure 3.11D shows the phase 

velocity map of apex-to-base motion.  Note that all images are correctly registered for 

post-processing.  Movement in the positive velocity direction appears light and 

movement in the negative velocity direction appears dark, while static objects are gray.  

The air in the lungs and outside the chest walls appears as noise.   

 

 

Figure 3.11: Example MR PVM myocardial velocity image.   
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Image Analysis Software 

 After acquisition, images were exported from the MRI scanner in DICOM format 

and were imported into Matlab (Mathworks, Natick, MA) for analysis.  All image 

processing was performed in Matlab with custom-written software.  Several image 

processing methods were universal to all acquired datasets, and those methods are 

outlined below.  

 

Background Phase Correction 

 Static structures such as the chest wall should have zero velocity in phase contrast 

images.  However, additional sources of phase errors such as gradient overshoots and 

Eddy currents may introduce phase offsets into the velocity image125-129.  These offsets 

will lead to incorrect velocity measurements and errors when the tracking algorithm is 

applied, and therefore need to be removed before velocity in the image is quantified.  

Furthermore, since the local phase correction filters on the scanner were turned off as part 

of the myocardial tissue velocity acquisition protocol, we expected myocardial tissue 

velocity images to have a background phase offset.   

Background phase error was removed using a least-squares fitted plane method 

that has been described previously130.  Pixels in which the variance of velocity over time 

was below a determined cutoff value were identified as static.  The static pixel cutoff 

value was individually tailored to each dataset and each velocity direction.  Figure 3.12 

shows an example of the areas defined as static tissue based on the variance of pixels 
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within the velocity image in a normal volunteer.  Static pixels have been labeled in red 

and are shown superimposed onto the magnitude image reconstruction.   

 

Figure 3.12:  Tissue defined as static for background phase correction.  

 

A plane surface was fitted to the velocity in the static pixels using a least-squares 

fit.  This plane, which contained an estimate of velocity errors across the image, was 

computed for each frame of the velocity data.  An average of the velocity offset plane 

was computed throughout the cardiac cycle, and this average offset value was subtracted 

from the original velocity data.  Correction for each direction in the three-dimensional 

data set was done independently.  

 

Validation 

A simple static imaging phantom that had both a “chest wall” and a “heart” was 

constructed.  Since the phantom was static, any velocity recorded during the MR PVM 
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scan was due to noise or unwanted phase offsets.  Velocities of up to 3 cm/s were 

observed within the static “heart” of the phantom.  

To test the ability of the least squares fitted plane algorithm to accurately remove 

background phase offsets, only the outer chest wall region was used in computing the 

offset plane.  This was done to mimic the scenario from the in vivo scan where only the 

chest wall is static and can be used for offset computation.  The computed plane was then 

subtracted from the entire image, and velocity values within the static “heart” were 

measured.  The background phase correction was conducted independently for each 

velocity direction.  

The least squares fitted plane algorithm was compared to a simple offset 

correction algorithm in which a constant offset, determined by finding the average 

velocity in three static ROIs within the image, was subtracted from the image.   

 

Table 3.1: Velocity in the static heart phantom before and after background phase 
correction.   

 Velocity in static “heart” region (cm/s) 

 Without offset 
correction  

Correction with 
fitted plane 

Correction with 
constant offset 

x-velocity -3.00+/- 0.05 0.69+/-0.07 -1.49+/-0.06  

y-velocity -0.28+/-0.04 0.05+/-0.04  0.50+/-0.07 

z-velocity -1.99+/-0.04 0.47+/-0.03   1.03+/-0.11 
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Velocity within the heart region decreased significantly after the phase correction 

algorithm was applied, and the phase correction algorithm using a fitted plane was the 

superior background phase offset correction algorithm.  Velocity values within the heart 

region of the phantom are given in Table 3.1.  Figure 3.13 shows an example image from 

the phantom before and after the least-squares background phase correction algorithm 

was applied.  Note that after the correction is applied, velocities within the static heart 

phantom are closer to zero and more uniform.   

 

Figure 3.13: Static phantom before and after background phase correction.   

 

 Based on the previous experiments, it was determined that the least squares fitted 

plane background phase correction algorithm was an acceptable alternative to the Local 

Phase Correction filters, and the algorithm was applied to all velocity datasets acquired 

with the MR PVM scan protocol.   
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Tissue Tracking Algorithm 

A tissue tracking algorithm based on a method for tracking individual particles 

from MRI phase velocity data described by Pelc et al in 1995 was implemented in 

Matlab100.  The idea underlying the method is that the location and three-dimensional 

velocity of a pixel in one cardiac frame can be used to compute the location of that pixel 

in the next cardiac frame.  Furthermore, if the assumption is made that myocardial motion 

is periodic, and the restriction is imposed that any given region will always returns to its 

end-diastolic starting point, motion can be estimated by either a forward or a backwards 

integration algorithm.  The error in the trajectory computed using forward integration is 

greatest at the end of the cardiac cycle, while the error in the trajectory computed using 

backward integration is greatest at the beginning of the cardiac cycle.  Since myocardial 

motion is periodic, the two trajectories can be combined via a weighting term that is 

dependent on cardiac phase to produce a more accurate trajectory100.  The computed 

trajectory will give the location of a specific segment of myocardium throughout the 

cardiac cycle, and that information can be used to determine the velocity of the region 

over time.  The accuracy of the combined forward-backward tracking algorithm has 

previously been tested and proven to be sufficient for following the motion of myocardial 

regions throughout the cardiac cycle100,131-134.   

A schematic of the tissue tracking approach is shown in Figure 3.14.  In a cardiac 

cycle with k velocity images taken at time intervals of ∆t, the algorithm begins at frame 

1.  In forward integration, the velocity of a point in the first frame V(f1,t1) is used to 

determine the location of the that point in the next frame, f2=f1+V(f1,t1)∆t.  In reverse 
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integration, the location of the first point and the velocity in the last frame V(fk,tk) is used 

to determine the location of the point in the frame, fk=f1-V(fk,tk)∆t.  Because of the 

periodic nature of myocardial motion, the trajectory of an individual pixel can be 

obtained either through forward or reverse integration, with the most accurate trajectory 

being a combination of the two.   

 

 

Figure 3.14 – Schematic of the myocardial tracking algorithm.  

 

Validation 

To test the accuracy of the tissue tracking algorithm in-vivo, the (x,y,z,t) position 

output of the tracking algorithm was compared to the location of tag intersection points 

on tagged MRI images.  The comparison was done using short axis images, in which 

tagged and velocity data were acquired at the same myocardial location.  Displacement 

on the tagged images was considered the gold standard.   
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The tracking algorithm outputs the three-dimensional (x,y,z) location of each 

pixel within the myocardium at each time point where MR PVM data was acquired; the 

tagged MRI sequence shows the deformation of tag lines within the myocardium at each 

time point where the tagged images are acquired.  Because the frame-to-frame acquisition 

intervals were different for the MR PVM and tagged images (and the tagged images were 

considered the gold standard), positional data from the tracking algorithm was 

interpolated to match the time points of the tagged images.  The trajectories computed 

from the MR PVM data were then superimposed onto the tagged images.   

To quantify agreement between the tagged and tracked images, the distance 

between the intersection of the true tagged lines and the trajectories computed by MR 

PVM was measured.  In each cardiac phase, this difference was computed for all tag-

intersection points within the myocardium.  An average value throughout the entire 

myocardium was computed for each cardiac phase.   

Good agreement was observed between the computed trajectories (shown in green 

and yellow in Figure 3.15), and the tagged MRI images.  Note that the agreement was 

present during late diastole and persisted throughout end-systole, where maximum 

myocardial deformation is observed. .  
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Figure 3.15:  Computed trajectories superimposed onto tagged MRI images.  

 

As expected, error in the combined forward-backward computed trajectory was 

greatest in the center of the cardiac cycle.  Nowhere throughout the entire cardiac cycle 

did the error exceed four pixels (in-plane pixel size was 1.4mm).  A plot of error in the 

computed trajectories (in # of pixels) throughout the cardiac cycle is shown in Figure 

3.16.  Note the shape of the curve, which illustrates that the error was greatest in the 

middle of the cardiac cycle.   
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Figure 3.16:  Error between the computed trajectory and myocardial tags.   

 

It is important to note that tagged MRI images only give information about in-

plane motion, while the tracking algorithm—which is computed from three-direction MR 

PVM data—computes the location of each pixel in three dimensions.  Therefore, the error 

values computed above are only based on in-plane motion and the computed MR PVM 

trajectory shown in Figure 3.15 is a projection of three-directional data onto planar 

tagged images.  This is significant because it shows that the tracking algorithm can 

correctly identify in-plane myocardial motion, but also gives information about thru-

plane motion at the same time.  Unfortunately, without a separate acquisition of tagged 

images in the long-axis orientation, we cannot verify the thru-plane accuracy of the 

computed path.   
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This study demonstrated that the tissue tracking algorithm can produce accurate 

results when myocardial velocities acquired using the MR PVM scan protocol are used to 

compute the movement of myocardial points in-vivo.   

 

Velocity Coordinate System 

In the Philips Intera magnet, velocity acquisition is performed in the coordinate 

system of the imaging slice, which is different from the coordinate system of the MRI 

scanner.  Although myocardial velocities in this study were always acquired in a short 

axis view, slight variations in cardiac anatomy from person to person mean that these 

short axis images could have been acquired in the transverse, coronal, or sagittal slice 

orientations.  As Figure 3.17 clearly shows, it is impossible to determine the slice 

orientation by simply looking at the short axis images; this information must be taken 

from the DICOM header file.  

 

Figure 3.17:  Short axis images acquired in different orientations 
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However, some generalities about cardiac anatomy can be made: the apex of the 

heart is always located more anterior than the base, and the base of the heart is always 

more cranial than the apex.  With this knowledge, it is possible to create a conversion 

system so that velocity images from short axis views acquired in transverse, sagittal, and 

coronal slices can be compared.  

As mentioned previously, the direction of velocity encoding moves with the 

orientation of the imaging slice.  This means that regardless of the slice angle or offset, 

the two in-plane velocity encoding directions will always remain in-plane, and the thru-

plane velocity encoding direction will always remain perpendicular to the imaging slice.  

The different coordinate systems of the magnet and a coronal imaging slice are illustrated 

in Figure 3.18.   
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Figure 3.18:  Coordinate System for the MRI scanner and Imaging Slice 

 

However, the in-plane and thru-plane velocities will change depending on if the 

imaging slice is transverse, sagittal, or coronal in orientation.  For a transverse slice, the 

two in-plane directions will always be RL and AP, while the thru-plane direction will 
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always be FH.  For a coronal slice, the in-plane velocities will always be RL and FH, 

while the thru-plane direction will always be AP; for a sagittal imaging slice, AP and FH 

will be in-plane while RL will always be thru-plane.  The Philips convention for velocity 

encoding is that motion toward the right (R), anterior (A), and foot (F) is encoded as 

negative, while motion toward the left (L), posterior (P), and head (H) is encoded as 

positive.  On the scanner consol, negative velocities are displayed as dark, while positive 

velocities are displayed as light.  Furthermore, the convention adopted by the Philips 

Intera magnet is that transverse images are viewed looking from the feet, coronal images 

are viewed looking from the front, and sagittal images are viewed looking from the left 

side.  Therefore, in the acquired image, the directions considered positive and negative 

for velocity encoding will vary depending on the orientation of the imaging slice.  The 

coordinate systems for short axis images acquired in transverse, coronal, and sagittal 

orientations are shown in Figure 3.19.   

Let x and y represent the two in-plane directions and z the thru-plane direction in 

some generic displayed image.  If a coordinate system is adopted for this generic image 

where the origin is located at the upper left hand corner, x is positive to the right, y is 

positive downward, and z is positive out of the page, a standardized set of 

transformations can be applied to acquired short axis images such that velocity in all 

images, regardless of acquisition orientation, is displayed according to the same 

convention.  These transformations are given in Figure 3.19.   
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Figure 3.19:  Coordinate systems of acquired and displayed SA velocity images.  
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Because these transformations are based on a priori knowledge of the orientation 

of the heart within the chest cavity, they are only valid for myocardial short axis images.  

It would NOT be correct to assume that these coordinate transformations applied to all 

velocity encoded images.  Velocity encoded images not in the myocardial short axis 

orientation will have the same in-plane and thru-plane encoding directions as the SA 

images, but the positive and negative directions may vary.  For example, it is possible to 

acquire coronal images of descending aortic flow with flow encoded as both positive and 

negative; if the imaging slice is rotated 44 degrees toward the anterior of the body, 

descending aortic flow will be encoded as negative; if the slice is oriented 44 degrees 

towards the posterior of the body, descending aortic flow will be encoded as positive.  

Figure 3.20 illustrates this phenomenon.  It is also important to note that if any slice is 

rotated more than 45 degrees, the slice orientation will automatically be changed and the 

in-plane and thru-plane velocity encoding directions will change; for example, a coronal 

imaging slice rotated 46 degrees toward the anterior of the body automatically becomes a 

transverse imaging slice.   

 

Figure 3.20: Descending aortic flow in a coronal imaging slice.  
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Once images were transformed into a standardized x,y,z image coordinate system, 

myocardial velocities were converted into a coordinate system more descriptive of 

cardiac motion (radial, circumferential, and longitudinal velocities).  The center of the 

LV blood pool was manually selected on an end-diastolic image and was used as a 

reference point for the velocity conversion.  Radial velocity was defined as positive 

toward the center of the LV blood pool, circumferential velocity was defined as positive 

for clockwise rotation when viewed from the apex, and longitudinal velocity was 

described as positive with motion toward the apex.   

 

Image Standardization  

Because cardiac anatomy is slightly different for each individual, images need to 

be standardized to a common template before inter-individual values can be compared.  

Images were standardized in accordance with American Heart Association 

recommendations135.  The inferior RV insertion point was manually identified and was 

used for registration.  In accordance with the AHA 17-segment model, basal and mid 

slices were divided into six-segments (anterior, anteroseptal, inferoseptal, inferior, 

inferolateral, and anterolateral), and apical slices were divided into 4-segments (anterior, 

septal, inferior, and lateral).  Figure 3.21 illustrates a Bulls-Eye plot of the standardized 

AHA model of myocardial segmentation.  Because no images were acquired at the LV 

apex, data was only available for 16 of the 17 segments in the model.   
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. 

Figure 3.21: Segmentation of the left ventricle (from Cerqueria et al, Circulation,2002).   

 

 

Definition of Systole and Diastole 

Systole and diastole in the phase velocity images were defined based on aortic 

valve opening and closing times.  After acquisition of MR PVM velocity data, an 

additional cine SSFP image was acquired in the LV outflow tract orientation.  Systole was 

defined as the time between aortic valve opening and closing.  Diastole was defined as 

the frame after aortic valve closing thru the end of data acquisition.   
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Myocardial Segmentation 

The myocardium was manually segmented in the MR PVM images.  Using the 

magnitude reconstruction from the MR PVM velocity images, endocardial and epicardial 

borders were traced throughout the cardiac cycle.  Using these borders, a template of the 

myocardium was created for each phase of the cardiac cycle and velocity data for the  

myocardium was only analyzed within this template.   
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CHAPTER 4  

AIM 2: CONSTRUCTION OF AN IMAGING PHANTOM, 

VALIDATION OF MR PVM SCAN ACCURACY, AND 

OPTIMIZATION OF ACQUISITION PARAMETERS FOR TISSUE 

TRACKING  

Introduction 

Motion tracking techniques make it possible to follow individual regions of 

myocardial tissue throughout the cardiac cycle, thereby overcoming the “fixed frame” 

limitation inherent in tomographic imaging techniques such as MR PVM100.  However, 

the accuracy of the paths computed by the motion tracking algorithm is dependent on the 

accuracy of the underlying velocity data.  Specifically, the spatial and temporal resolution 

of the velocity data used for tracking have a large influence on tracking accuracy.  

Temporal resolution affects tracking accuracy by changing the size of the time step used 

to calculate the next spatial position.  Too large of a time step will miss important 

velocity information and will cause the tracking algorithm to jump to an incorrect 

position or lead to blurring of the motion tracking curve131.  Spatial resolution affects 

tracking accuracy and the reproducibility of MR PVM velocity values.  Insufficient 

spatial resolution (i.e. pixels that are too large) will result in averaging of velocities over 

large areas and may lead to inaccuracies in the measured velocity maps131.  This becomes 

especially problematic when a velocity distribution exists within the voxel volume, such 
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as can occur at the interface of the myocardium and the blood pool, or in regions of the 

myocardium without uniform velocities.   

Ideally, motion tracking should be performed using accurate velocity data that has 

been acquired with both high spatial and temporal resolution.  However, the lack of 

reference points within the myocardium makes it difficult to verify the accuracy of in-

vivo velocity measurements, and imaging time constraints make the acquisition of data at 

high temporal and spatial resolution unrealistic in a clinical setting.  Therefore, the 

purpose of this study was to: 1) verify accuracy of MR PVM for measuring myocardial 

tissue velocity in an imaging phantom, and 2) determine how the spatial and temporal 

resolution of the acquired MR PVM velocity data affects tissue tracking accuracy.   

 

Methods 

Description of Motion Phantom 

An MRI-compatible phantom capable of three-dimensional movement was built.  

The phantom consisted of a concentric set of two cylinders rotating in a plane transverse 

to the MRI bore and moving linearly along the axis of the MRI bore.  The outer cylinder 

had a diameter of 7.5 cm, the inner cylinder had a diameter of 4 cm, and both cylinders 

were 8cm in length.  These cylinders represented the epicardial and endocardial surfaces 

of the left ventricle.  The dimensions of the model were based on in-vivo measurements 

available in the literature49.  “Myocardial tissue” located between the two cylinders was 

simulated using a polyvinyl alcohol (PVA) cryogel, a material that has T1 and T2 



www.manaraa.com

 74 

relaxation times similar to those of myocardial tissue when it undergoes three freeze-thaw 

cycles136.  A removable end plate was fixed to the distal end of the cylinder assembly 

allowing the space between concentric cylinders to be filled with PVA cryogel.  O-rings 

between the end plate and the cylinder ends ensured a water-tight seal. 

Movement of the myocardial phantom was controlled by two computer-controlled 

piezo-powered high-force motors (Bayside manufacturing, Port Washington, NY).  One 

motor moved the phantom linearly along the axis of the MRI bore (z-direction), while the 

other motor rotated the phantom in a plane transverse to the MRI bore (x-y plane).  A 3 

meter long, 2.5cm diameter acrylic rod attached the cylindrical myocardial phantom with 

the computer-controlled motors, allowing the motors to remain outside the 5-gauss line of 

the MRI scanner.  Detailed calculations on the rotational shear, bending moment, and 

deflection in the control rod indicated that the deformation of the rod during rotation was 

negligible, with maximum position error from the cylinder to the motor at less than 0.2 

mm.  The acrylic rod rested on a series of support cradles that allowed the phantom to 

rotate and translate freely.  The wooden supports were lined with Teflon to minimize 

friction and 10cm in height to ensure that the position of the cylinder correctly simulated 

the position of the human heart within the MRI scanner bore.   

The piezo-control motors were not magnetically-driven, so the fringe magnetic 

field (<5 gauss) of the scanner did not affect their performance or accuracy.  The motors 

were controlled through an amplified servo-control mechanism.  The input signal to the 

servo control system was a 2-channel, time-varying analog signal, (0-5 Volts), where 

voltage was linearly related to motion. Channel #1 corresponded to linear (z-direction) 

translational motion and channel #2 corresponded to rotation in the x-y plane.  
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The motors were physically coupled and directed by a control program, Galil, 

(Rocklin, California) which ran on a PC.  The Galil program accepted ASCII data in 

“time-versus-motion” pairs for each channel and provided an output signal to the servo 

controller to move the model.  The program was set to continuously repeat motion in 

order to simulate the multiple heartbeats needed to complete the scan.  The control 

program on the computer also provided a 5 volt trigger pulse at the start of the motion 

cycle, which served as an ECG trigger input to the MRI scanner.   

The system was equipped with a series of feed-back sensors that measured the 

actual displacements of both motors versus time.  The sensors recorded the exact position 

versus time curve experienced by the phantom.  The displacement information from these 

sensors served as gold standard of the phantom position.  Therefore, knowledge of the 

true motion of the phantom was known at each time point.   

 The LV phantom was placed inside of a static chest wall phantom during imaging.  

The chest wall phantom consisted of two concentric cylinders filled with the same PVA-

cryogel as the LV phantom.  The outer cylinder had a diameter of 26cm and the inner 

cylinder had a diameter of 18cm.  Velocity in the static chest wall was used for 

background phase offset correction in the same manner as was done in the in-vivo 

studies.   
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Figure 4.1: The myocardial motion phantom  

 

A schematic of the motion phantom is shown in Figure 4.1A.  Figure 4.1B shows 

a close up of the cylindrical “left ventricle”.  Figure 4.1C illustrates how the phantom was 

setup within the MRI magnet, with the LV phantom located within the magnet’s bore, 

and the computer controlled motors are outside of the 5-gauss line.  Figure 4.1D shows a 

close up of the LV phantom within the magnet and the static “chest wall” used for 

background phase offset correction.   

 

Verification of MR PVM Scan Accuracy 

Velocity within the myocardial motion phantom was imaged using the MR PVM 

scan protocol developed in Chapter 3.  Background phase errors were removed using a 
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least-squares plane fitted to the outer ring of static tissue, as was also described in 

Chapter 3.  In accordance with the myocardial coordinate system, the acquired three-

directional velocities were converted to radial velocity (positive toward the center of the 

LV blood pool), longitudinal velocity (positive toward the apex), and circumferential 

velocity (positive for clockwise rotation when viewed from the apex) using the center of 

LV bloodpool as a reference point.   

Velocities were measured within four 8x8mm regions of interest (ROIs) within 

the phantom (septal, lateral, anterior, inferior walls).  Curves of velocity versus time in all 

three-directions of motion (radial, longitudinal, circumferential) were generated for each 

ROI.  Peak systolic and diastolic velocities, as well as the time-to-peak systolic and 

diastolic velocities, were computed for each ROI.   

Correlation between measured and true values was determined via linear 

correlation analysis.  Measured and true values were also compared using a modified 

Bland-Altman analysis where the difference between the two values was plotted against 

the known true value, instead of the average of the two137.   

 

Tissue Tracking within the Motion Phantom 

Motion tracking was performed using the acquired velocity data.  After 

background phase correction was performed, a motion trajectory was computed for each 

pixel within the myocardial phantom.   
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The motion tracking algorithm generated positional data for each pixel within the 

myocardium at each time point in the cardiac cycle [position(x,y,z,t)].  The feedback 

sensors on the motion control system provided the same information about the exact 

location of the imaging phantom.  This allowed the trajectory computed by the motion-

tracking algorithm to be quantitatively compared to the true trajectory of the motion 

controlled phantom.  The error between the path computed by the tissue tracking 

algorithm and the feedback data from the sensors (the reference standard) was calculated 

as:  

Et=[(xref – xpvm)2 + (yref – ypvm)2  + (zref – zpvm)2]1/2 

 

where t is the time step between imaging frames.  The total error, RMSE = ΣEt, was 

calculated as the sum of error values over time.  Therefore, RMSE was the integrated 

error of each pixel’s path throughout the entire cardiac cycle.  For each scan, an average 

RMSE value over the entire myocardial phantom throughout the entire cardiac cycle was 

computed.  Error percentage in any given trajectory was calculated as the average RMSE 

divided by the true path length.   

 

Temporal Resolution  

To test the effects of temporal resolution on tracking accuracy, the temporal 

resolution of the MR PVM scan was varied by changing the number of k-space lines 

acquired per cardiac phase.  Velocity data was acquired in six different scans, during 

which the number of k-space lines acquired per cardiac phase was varied from 3 to 13.  
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This resulted in a frame-to-frame temporal resolution of between18msec (3 lines of k-

space/phase) and 82 msec (13 lines of k-space/phase).  All other scan parameters were 

held constant; spatial resolution was fixed at a FOV 370mm and a scan matrix of 144 was 

used for all scans.  All six scan were acquired in a single imaging sequence.  The entire 

protocol was repeated on three different days to assess reproducibility.   

Images were processed as described previously, the tissue tracking algorithm was 

performed in all datasets, and an average RMSE error value was computed for each 

temporal resolution value.   

 

Spatial Resolution 

Spatial resolution can be changed by either altering the scan matrix or the image 

field-of-view (FOV).  For optimization of imaging parameters using the phantom, FOV 

was fixed and the matrix size was altered.  In order to make the phantom studies resemble 

in-vivo conditions as closely as possible, a FOV of 370mm was chosen.  This large FOV 

was deemed sufficient to eliminate foldover in most patient studies.  Theoretically, 

foldover in static tissue regions should not affect the velocity values in the phase image; 

however, we have found that foldover artifacts do introduce errors when using 

background static tissue to correct the background phase errors.  This is a significant 

finding, as accurate background phase correction is critical when performing 

measurements of the low velocities within the myocardium.   
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With the FOV held constant at 370mm, seven different scans were acquired in 

which the scan matrix was varied from 64 to 192.  All other scan parameters were held 

constant; temporal resolution was fixed at 3 lines of k-space/phase.  All scans were 

reconstructed to a matrix size of 256.  Velocity data for all seven scans was acquired in a 

single imaging session, and the entire protocol was repeated on three different days to 

asses reproducibility.   

Images were processed as described previously, the tissue tracking algorithm was 

carried out in all datasets, and an average RMSE error value was computed for each value 

of spatial resolution.   

 

Results 

Verification of MR PVM Scan Accuracy 

 Excellent correlation was observed between the motion recorded by the feedback 

sensors and the velocity determined by MR PVM.  The correlation coefficient was 0.90 

for longitudinal velocity and 0.93 for circumferential velocity.  Plots of velocity vs. time 

showing both the true and measured velocity are shown in Figure 4.2.  The true motion of 

the phantom is shown in black, and velocity curves from the four regions of interest 

within the myocardial phantom are shown in red.   
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Figure 4.2:  Velocity curves from the phantom experiments.  

 

 MR PVM accurately detected velocities within the phantom: mean difference 

between the measured and true velocity throughout the cardiac cycle computed via 

Bland-Altman analysis was -0.15+/-2.8cm/s in the longitudinal direction and 0.06+/-1.38 

cm/s in the circumferential direction.   

Peak systolic and diastolic velocities measured by MR PVM were an average of 

1.0+/- 0.9 cm/s greater in magnitude than true velocities in the longitudinal direction and 

an average of 3.2+/-1.9 cm/s larger in the circumferential direction.  

MR PVM was accurate in determining the timing of peak velocities: mean 

difference between measured and input was 9.4+/-24.4 msec in the longitudinal direction 

and 1.0+/-20.3 msec in the circumferential direction.  The temporal resolution of the scan 

was approximately 30msec, so the observed differences are less than one time frame.  

Table 4.1 gives the actual measured and true values for peak velocities and time-to-peak 

velocities within the motion phantom.   
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Table 4.1: Peak and Time-to-Peak Velocity Measurements in the phantom 

 Longitudinal Circumferential 

 True Measured True Measured 

Peak Systolic Velocity 
(cm/s) 7.8 9.3+/-0.4 3.8 7.0+/-1.0 

Peak Diastolic Velocity 
(cm/s) 15.1 15.8+/-1.1 5.8 10.0+/-1.7 

Time-to-Peak Systolic 
Velocity (msec) 180.0 185.5+/-9.0 240.0 240.0+/-1.0 

Time-to-Peak Diastolic 
Velocity (msec) 570.0 604.0+/-10.4 510.0 517.5+/-9.0 

 

 

Tissue Tracking within the Motion Phantom 

Average path length within the myocardial phantom was 38.6mm.  Computed 

trajectories within the phantom correctly followed the motion prescribed by the motors.  

Trajectories computed for individual pixels did not intersect and exhibited the parallel 

trajectories expected for the rigid body phantom.  The three-dimensional trajectories 

showed circumferential and longitudinal displacement, with the greatest amount of 

displacement along the longitudinal (z) direction.  Figure 4.3 illustrates three-dimensional 

trajectories computed within the phantom.  For clarity, only the trajectory of every third 

pixel is shown.  Note that, as expected, the trajectories of all pixels within the rigid body 

phantom are identical.  Also note that none of the trajectories lose their course throughout 

the cardiac cycle and deviate from the expected path.  
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Figure 4.3:  Computed 3D motion trajectory within the LV phantom.  

 

The maximum expected displacement of the phantom in the longitudinal direction 

was 16.3mm; an average maximum displacement of 15.1+/-0.45mm was observed in the 

path calculated by the motion tracking algorithm.  In the in-plane direction, an average 

maximum displacement of 3.0+/-0.31mm was expected and an average maximum 

displacement of 3.2+/-0.57mm was observed.   
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Temporal Resolution 

A strong relationship was observed between tracking accuracy and temporal 

resolution, with higher temporal resolution resulting in lower error values.  As is clearly 

illustrated in Figure 4.4, the relationship between temporal resolution and tracking 

accuracy was approximately linear: RMSE= 0.04*temp res + 0.32, (R2=0.91).  Table 4.2 

lists the effective temporal resolution, computed RMSE error, and % error for each of the 

six different scans.  Recall that each scan was repeated three separate times, so the values 

given are an average of the three trials.   

 

Table 4.2: Effects of temporal resolution on tracking accuracy 

 

# k-space 
lines 

Temp res 
(msec) 

RMSE 
(mm) 

% error (%) 

3 18.0 1.3+/-0.2 3.3+/-0.5 

5 30.0 1.7+/-0.7 4.5+/-1.7 

7 42.9 1.8+/-0.7 4.8+/-1.9 

9 52.9 2.1+/-0.6 5.5+/-1.6 

11 64.3 2.7+/-1.1 7.1+/-2.8 

13 81.8 4.1+/-1.5 10.6+/-3.8 
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Figure 4.4:  Effect of temporal resolution on tracking accuracy.   

 

Figure 4.5 shows the effect of temporal resolution on tracking accuracy.  Figure 

4.5A shows the true motion of the phantom.  Because the phantom did not have any 

radial thickening, the trajectories of individual pixels remain in the same radial position 

throughout the cardiac cycle.  Note that the tracking algorithm computed a three-

dimensional trajectory, and that the paths shown in Figure 4.5 are projections of that 

three-dimensional motion onto a two-dimensional plane; there is also significant through-

plane motion which is not shown.  Figure 4.5B shows the a 2D projection of the 

trajectories computed by the motion tracking algorithm from MR PVM velocity data 

acquired at a temporal resolution of 18msec; figure 4.5C shows the same for a temporal 

resolution of 82msec.  It is clearly visible that the error in the computed path increased as 

the frame-to-frame interval increased.   
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Figure 4.5:  Computed trajectories with varying temporal resolutions.    

 

Spatial Resolution 

A weak relationship was observed between the spatial resolution of the MR PVM 

scan and tracking accuracy.  A linear regression approximated the relationship as: 

RMSE=-0.08*spatial resolution+1.66 (R2=0.18), Figure 4.6.  Table 4.3 lists the effective 

spatial resolution, computed RMSE error, and % error for each of the seven different 

scans.  Recall that each scan was repeated three separate times, so the values given are an 

average of the three trials.   
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Figure 4.6:  Effect of spatial resolution on tracking accuracy.   

 

 

Table 4.3- Effects of spatial resolution on tracking accuracy 

 
Scan 
matrix 

Acquired 
pixel size 
(mm) 

RMSE 
(mm) 

% error (%) 

64 5.8 1.4+/-0.2 3.5+/-0.5 

96 3.9 1.3+/-0.3 3.5+/-0.7 

112 3.3 1.3+/-0.2 3.3+/-0.5 

128 2.9 1.6+/-0.5 4.2+/-1.2 

144 2.6 1.2+/-0.2 3.0+/-0.5 

160 2.3 1.8+/-0.4 4.7+/-1.1 

192 1.9 1.4+/-0.2 3.7+/-0.4 
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Discussion 

An MRI-compatible motion phantom was built and used to verify the accuracy of 

MR PVM for measuring myocardial tissue velocities.  MR PVM measurements of peak 

velocities and time-to-peak velocities within the phantom were accurate and correlated 

well with the known true motion of the phantom.  A set of experiments investigating the 

effects of spatial and temporal resolution in MR PVM velocity data used for motion 

tracking suggested that high temporal resolution is much more crucial to generating 

accurate tracking trajectories than high spatial resolution.   

 

Previous Validations of MR PVM 

The ability of MR PVM to correctly measure blood flow velocity has previously 

been demonstrated, both in-vivo and in-vitro138-143.  Although tissue velocity imaging 

employs the same MR pulse-sequence as blood flow imaging, the lower velocities of 

myocardial tissue present some unique problems.  Background phase offset correction is 

especially important when measuring the lower velocities of myocardial tissue, as the 

background phase errors are the same order of magnitude as the desired signal from 

myocardial tissue.  Lower velocities require higher gradients, which require longer echo 

times and higher bandwidths.  Therefore, it is important that the accuracy of the MR 

PVM technique for imaging myocardial tissue motion be verified in a motion phantom 

before being applied in-vivo.   
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This study verified the ability of MR PVM to measure the lower velocities of the 

myocardium: mean difference between measured and true velocities was -0.15+/-2.8cm/s 

in the longitudinal direction and 0.06+/-1.38 cm/s in the circumferential direction.  Given 

that a Venc of 20cm/s was employed, these errors are less than 1% of the dynamic range.   

 

Motion Tracking Techniques 

Although MR PVM images can accurately capture myocardial velocity 

information, motion can be difficult to interpret from the acquired velocity images.  

Tissue tracking techniques allow the measured velocity information to be transformed 

into displacement, making the information easier to interpret.   

The accuracy of the path generated by the tissue tracking algorithm is a function 

of the accuracy of the underlying velocity data.  Residual phase from eddy currents or 

Maxwell effects can introduce errors into the velocity images.  Therefore, it is necessary 

that background phase correction be carried out prior to tracking.  Instead of relying on 

the local phase correction filters in the Intera software, we opted to carry out background 

phase correction manually using an algorithm based on a least-squares fit to the residual 

phase errors130.  While this added an extra step to the data processing, it allowed for 

greater control of the data and ensured that residual phase errors were correctly removed.   

The motion tracking algorithm applied in this study has previously been 

implemented both in-vivo and in-vitro, and has been verified to be accurate in both a 

phantom model and in vivo100,131,132.  However, in previous studies, the motion tracking 
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algorithm was only evaluated using velocity data acquired at a single temporal resolution.  

While it has previously been reported that a “substantial improvement” in tracking 

accuracy was observed when the number of reconstructed velocity frames was 

increased132, this is the first study to systematically and quantitatively investigate the 

effects of temporal resolution in the underlying velocity data on tracking accuracy.  Our 

findings are in accordance with previous observations that temporal resolution of the 

underlying velocity data is a critical factor for generating accurate tracking results; we 

extend those findings quantitatively to demonstrate that a temporal resolution of at least 

40msec is necessary to keep error values within the computed trajectories to under 5% 

(Table 4.2).   

Motion tracking from MR PVM velocity data can be performed using other 

methods than the one employed in this paper.  Methods in which cardiac motion is 

modeled as a series of Fourier harmonics and tissue tracking is carried out in the Fourier 

domain have been previously introduced133,144,145.  These methods have the advantage 

that eddy currents and other sources of phase error, which affect only the DC component 

of velocity, can easily be removed from the velocity data.  However, Fourier-based 

tracking methods are computationally intensive and more sensitive to noise.  Since we 

were able to demonstrate sufficient tracking accuracy when the simple forward-backward 

tissue tracking algorithm was employed with high-temporal resolution velocity data, we 

did not feel the need to explore the Fourier tracking methods at this time.   
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Study Limitations 

The ideal myocardial motion phantom would be able to correctly replicate all of 

the complex motions of the myocardium: displacement, thickening, torsion, and shear.  

Several MR-compatible phantoms have previously been designed to simulate some 

aspect of this complex myocardial motion146-149.  These have ranged from simple rotating 

disk phantoms147 to a complex re-creations of myocardial displacement and shear148,149.  

Each of these designs has both some attractive features and some drawbacks.  The simple 

bulk-motion phantoms are easy to construct and the exact motion at every point within 

the phantom is easily determined.  The drawback of a rigid body design, however, is that 

the motion of the phantom is an incomplete representation of myocardial motion.  The 

more complex phantoms which incorporate twisting, bulk motion, and shear are attractive 

because they more closely mimic the true motion of the myocardium.  The drawbacks of 

these complex designs are that the phantoms are difficult to construct and the motion of 

individual points within the phantom are difficult to determine.  Therefore, these 

phantoms rely on either an analytical solution to solve for the motion of points within the 

phantom149, or some independent verification of motion, such as placing optical markers 

within the phantom and using digitized video to track the motion of individual points148.  

However, these techniques are less than ideal, as many simplifying assumptions need to 

be made to derive an analytical solution, and optical markers cannot be placed at every 

point within the phantom.   

In light of these limitations, we elected to construct a rigid body phantom capable 

of three-directional movement.  Although the phantom was a greatly simplified model of 

the myocardium, the motion of every point within the phantom was known, and thus, the 
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phantom was sufficient for validating the accuracy of the MR PVM imaging technique.  

Furthermore, the phantom made it possible to optimize the scan parameters for imaging 

myocardial motion with the MR PVM protocol.   

Results from the phantom study suggest that the spatial resolution of the MR 

PVM velocity data has minimal impact on tracking accuracy.  Although this conclusion is 

true in the rigid body phantom, it needs to be noted that this finding may not hold in-vivo.  

In the rigid body phantom, all regions of the LV moved as a single piece.  This means that 

there was no velocity gradient along the phantom, aside from a small difference in 

circumferential velocity between the inner and outer edges of the LV phantom.  

Therefore, averaging velocity from larger myocardial regions into single pixels would 

have had minimal affect on the velocity within that pixel.  In an in-vivo situation where 

myocardial velocities show regional variability—as might be the case for a failing or 

infarcted heart—spatial resolution may have a much greater impact on tracking accuracy.  

A deformable phantom with a radial velocity gradient is needed to further investigate this 

claim.   

 Nevertheless, the MR PVM velocity scan protocol was too long to be 

implemented with both high spatial and temporal resolution in a clinical setting.  

Therefore, we needed to reduce the imaging time by sacrificing either spatial or temporal 

resolution.  Since the results of this study highlighted the importance of good temporal 

resolution, in the final protocol we elected to keep the highest possible temporal 

resolution (3 lines of k-space/phase), and decrease the spatial resolution to reduce the 

total imaging time.  In the final three-slice imaging protocol, the scan matrix was 144 

with at FOV of 370mm.   
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Conclusions 

A motion phantom simulating the movement of the left ventricle was constructed.  

The accuracy of MR PVM for measuring myocardial tissue velocities was verified using 

the motion phantom.  The effects of spatial and temporal resolution on MR PVM scan 

accuracy were investigated, and temporal resolution was found to have a much greater 

influence on tracking accuracy than spatial resolution.  Based on these results, the 

optimal scan for use in-vivo was determined to need high temporal, but not necessarily 

high spatial, resolution.   
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CHAPTER 5 

COMPARISON OF MR PVM AND TDI MYOCARDIAL TISSUE 

VELOCITIES 

Introduction 

Tissue Doppler Imaging (TDI) has been used to measure myocardial contraction 

and relaxation velocities and to identify the presence of mechanical delays in 

dyssynchrony patients29,72-74.  TDI measurements such as septal-to-posterior wall motion 

delay, time-to-peak systolic velocity, and the standard deviation of the time-to-peak 

velocity across the LV may predict response to CRT29.  Limitations of TDI include its 

ability to retrieve velocity information only for objects moving directly toward or away 

from the transducer and the imaging constraints imposed by limited echocardiographic 

windows across the chest. 

MR phase velocity mapping (MR PVM) has been used extensively to measure 

blood flow velocity.  As has been shown in chapters 3 and 4, MR PVM can be adapted to 

measure the lower velocities of myocardial wall motion.  Therefore, MR PVM can obtain 

data similar to TDI without the limitations imposed by acoustical windows.  Furthermore, 

MR PVM can acquire multidirectional velocity information at any location within the left 

ventricle and can acquire velocity information for each voxel within the myocardium, 

thus providing a detailed three-dimensional description of motion for the entire 

myocardium53,94,95,138,150.  However, MR PVM has not been evaluated in patients with 
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dyssynchrony, has not been rigorously compared to TDI, and the repeatability of both 

velocity measurement techniques has not been evaluated in the same set of subjects.    

The purpose of this study was 1) to compare longitudinal myocardial velocity and 

time-to-peak longitudinal velocity obtained with MR PVM and TDI in normal subjects 

and patients with LV dyssynchrony and 2) to assess the reproducibility of both MR PVM 

and TDI by performing repeated measurements in normal subjects.   

 

Methods 

Study Population 

Ten normal volunteers (age=27.5+/-6.9 yrs, 5 male) and ten consecutive patients 

(age=64.9+/-16.1 yrs, 5 male) scheduled for CRT participated in this prospective 

evaluation of the two imaging techniques.  The CRT patients had heart failure with 

NYHA functional class III (range II/III-III/IV), ECG evidence of dyssynchrony 

(QRS>120msec) and LVEF < 35%.  Medications included ß-blockers, Ace 

inhibitors/angiotensinogen receptor blockers, diuretics, aldosterone antagonists, and 

Digoxin.  The imaging protocol was the same for both patients and normal subjects, with 

the MRI exam preceding the echocardiographic-TDI examination.  Normal subjects 

completed the protocol twice (most on consecutive days) to test reproducibility.  The 

Institutional Review Board approved the study protocol, and all participants gave written 

informed consent before participation.  
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MR PVM Imaging 

MRI exams were acquired using the final velocity imaging protocol described in 

Chapter 3, but with velocity only being acquired in a single, basal short axis slice.  Scout 

images preceded acquisition of 2-chamber, four chamber, and short axis steady-state free 

procession (SSFP) cine images.  The length of the left ventricle (from apex to the mitral 

valve plane) was measured on the end-diastolic 2-chamber image, and a short axis 

orientation located 70% of the distance from the apex to base was chosen for the MR 

PVM scan.  (70% of the LV length was chosen for slice placement to capture maximal 

myocardial motion without having myocardial tissue leave the imaging slice during the 

cardiac cycle.)   

Background phase errors were removed from the MR PVM data as described 

previously.  Only longitudinal (thru-plane) myocardial tissue velocities were considered 

in this study, as this was the only velocity direction that could be measured with TDI.  

Longitudinal velocity toward the apex was defined as positive.  Velocity was averaged in 

8x8mm regions of interest in the septal and lateral walls, yielding velocity versus time 

data for each ROI.  Curves were exported to a spreadsheet for analysis. 

 

TDI Imaging 

Tissue Doppler Imaging (TDI) was performed using a General Electric Vivid 7 

system (GE Medical Systems, Waukesha, WI) immediately following the MR scan.  

Longitudinal (apex-to-base) velocities in the septal and lateral myocardial walls were 
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obtained in the 4-chamber view by digital color-coded TDI at a frame rate of 

147frames/sec.  TDI velocities were corrected for the angle between longitudinal 

orientation of the ventricular walls and the Doppler beam. (Corrected Velocity 

=Measured Velocity/cos Θ, where Θ is the angle between the Doppler beam and the 

motion of the myocardial wall).  Regions of interest (8x8 mm) were placed in the 

myocardial wall at 70% of the distance from apex to base (to correspond to the location 

examined by MR).  Values of longitudinal velocity versus time were exported to a 

spreadsheet for analysis.   

 

Data Analysis  

Agreement between MR and TDI velocity measurements was computed using 

linear regression analysis.  MR velocity values were interpolated to yield MR-TDI data 

pairs at each time point.  MR and TDI velocities were compared at each time point in 

both the septal and the lateral ROIs.  Curves were registered using the R-wave from the 

EKG signals.  A regression line and correlation coefficient were calculated based on all 

pairs of MR-TDI data points.  In addition, the data was subdivided into normal 

volunteers, patients, lateral and septal walls, and separate correlation coefficients were 

calculated for each subgroup.   

Peak velocities during both systole and diastole, and the time-to-peak velocities 

were compared between MR and TDI using a paired, two-tailed Student’s t-test.  P-

values <0.05 were considered to be statistically significant.  The coefficient of variation 

was computed as the standard deviation of repeated measurements divided by their mean.  
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A Bland-Altman analysis was conducted to analyze the agreement between the two 

velocity measurement techniques137.  Dyssynchrony was assessed as the absolute 

difference between time-to-peak systolic velocity in the septal and lateral walls24,29,151,152.  

Repeatability of both MR and TDI data was assessed by comparing the peak velocity 

(both systolic and diastolic) and the time-to-peak velocity between repeated scans using a 

Bland-Altman analysis137.   

 

Results 

Comparison of peak velocity measurements 

 Velocities measured with MR PVM correlated well with velocities measured by 

TDI in both normal subjects and dyssynchrony patients (r=0.86).  The correlation 

coefficient was greater for normal subjects (0.88 in the septal wall, 0.88 in the lateral 

wall) than for dyssynchrony patients (0.78 in the septal wall, 0.72 in the lateral wall).  

Example of TDI (triangles) and MR PVM (squares) velocities measured in the septal ROI 

for a normal volunteer (left) and a dyssynchrony patient (right) are shown in Figure 5.1.  

Note the high correlation between the curves (r=0.926 for the normal volunteer, r=0.910 

for the dyssynchrony patient), but that peak systolic and diastolic velocities are higher in 

magnitude when measured by MR.  .   
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Figure 5.1: Example MR PVM and TDI velocity curves 

 

Velocities measured by MR consistently exceeded velocities measured by TDI in 

both patients and volunteers, with the regression line for all data points being 

TDI=0.60*MR-0.8.  Figure 5.2 shows the peak systolic and peak diastolic velocity values 

measured by MR and TDI in a regression plot.  The dotted line represents the identity 

line and the solid line is the line fitted to the correlation.  (For clarity, the figure shows 

only the peak velocity values, not all measured velocity values).  The regression line for 

peak velocities is TDI=0.59*MR+0.3 (r=0.96).  
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Figure 5.2: Peak velocities measured by MR and TDI 

 

Table 5.1 lists the values of peak velocities measured in the normal volunteers and 

the dyssynchrony patients during systole and diastole.  The average peak systolic velocity 

in normal subjects measured by MR exceeded the TDI velocity, both in the septum and 

lateral wall.  The MR peak diastolic velocities also exceeded the TDI velocities, both in 

the septum and lateral wall.  

Velocity measurements in the dyssynchrony patients showed similar results.  MR 

peak systolic velocities were significantly greater than TDI velocities in the lateral wall, 

but not in the septum.  Diastolic peak diastolic velocities measured by MR were 

significantly greater than TDI velocities in the septum, but not in the lateral wall. 
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Table 5.1: Peak Velocities Measured by MR PVM and TDI 

 Systolic Velocity (cm/s) Peak Diastolic Velocity (cm/s) 

 Septal Wall Lateral Wall Septal Wall Lateral Wall 

 Normals Patients Normals Patients Normals Patients Normals Patients 

MR 7.3+/-1.4 5.3+/-1.4 10.7+/-2.4 5.7+/-1.9 -16.3+/-4.1 -6.4+/-3.1 -19.5+/-3.7 -7.1+/-4.7 

TDI 5.0+/-1.1 3.8+/-1.4 6.9+/-2.5 3.0+/-1.3 -8.5+/-1.6 -4.3+/-2.6 -11.7+/-2.2 -5.4+/-4.1 

 p<0.001 P=NS p<0.001 p<0.005 p<0.001 p<0.005 p<0.001 P=NS 

 

Figure 5.3 shows the peak systolic (left) and peak diastolic (right) velocities 

measured by MR PVM and TDI.  Velocities measured by MR were consistently higher 

than velocities measured by TDI, with the difference being significant everywhere except 

the septal wall during systole and the lateral wall during diastole in patients.  In the 

figure, * denotes p<0.001, and + denotes p<0.005.   

 

Figure 5.3: Peak velocities measured by MR PVM and TDI.   
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Bland-Altman analysis found a large bias in the value of peak velocity measured 

by MR and TDI: MR peak velocity measured an average of 4.35 +/- 3.7 cm/s larger in 

magnitude than peak velocity measured by TDI.  Figure 5.4 shows the Bland-Altman plot 

of the absolute value of peak velocities and clearly illustrates that peak velocities were 

consistently higher when measured by MR.  The solid line denotes the average difference 

between MR and TDI, and the dashed lines denote +/- 2 standard deviations. 

 

 

Figure 5.4: Bland-Altman plot showing the bias in peak velocity measurements  
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Comparison of time-to-peak velocity measurements  

Time-to-peak systolic and diastolic velocities measured by MR and TDI 

correlated strongly.  The correlation coefficient for time-to-peak velocity was 0.97, with 

the equation of the linear regression line being TDI=0.96*MR+0.02.  Although the 

magnitude of peak velocity measurements by MR PVM exceeded the TDI measure of 

velocity, no such bias was observed in measurements of time-to-peak velocity by MR or 

TDI in either normal subjects or dyssynchrony patients.  Figure 5.5 show the time-to-

peak systolic (left) and diastolic velocity (right) measured by MR PVM and TDI.  Note 

that there were no significant differences in time-to-peak velocities measured by MR 

PVM and TDI.  Table 5.2 gives the numerical values.  

 

 

Figure 5.5: Time-to-peak velocities measured by MR PVM & TDI.   
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Table 5.2: Time- to-Peak Velocities Measured by MR PVM and TDI 

 Time-to-peak Systolic Velocity (sec) Time-to-peak Diastolic Velocity (sec) 

 Septal Wall Lateral Wall Septal Wall Lateral Wall 

 Normals Patients Normals Patients Normals Patients Normals Patients

MR 0.16+/- 
0.06 

0.20 +/-
0.04 

0.10+/-
0.02 

0.18+/-
0.05 

0.50 +/-. 
03 

0.53+/-
0.06 

0.50+/-
0.03 

0.49+/-
0.09 

TDI 0.16+/- 
0.05 

0.21+/-
0.05 

0.12+/-
0.04 

0.18+/-
0.04 

0.50+/-
0.03 

0.54+/-
0.10 

0.51+/-
0.02 

0.51+/-
0.07 

 P=NS P=NS P=NS P=NS P=NS P=NS P=NS P=NS 

 

A Bland-Altman analysis of the time-to-peak velocity showed good agreement 

between the time-to-peak velocity measured by MR and TDI.  The measurement contains 

little bias, with a mean difference between the two techniques of 5 msec (+/- 44msec).  

The Bland-Altman plot is shown in Figure 5.6.  The solid line denotes the average 

difference, and the dashed lines denote +/- 2 standard deviations. 

Excellent correlation was observed between dyssynchrony measured by MR and 

TDI.  The equation of linear regression was TDI=0.949*MR, with a correlation 

coefficient of 0.91.  Table 5.3 lists the value of dyssynchrony measured by MR and TDI 

for each of the ten heart failure patients who participated in this study.  Average 

dyssynchrony measured by MR was 56+/-24msec, while average dyssynchrony measured 

by TDI was 54+/-34msec.  The average difference between dyssynchrony measured by 

MR and TDI was 24+/-13msec.   
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Figure 5.6: Bland-Altman plot of time-to-peak velocity.   

 

Table 5.3: Dyssynchrony Values by MR and TDI for Individual Patients 

Patient # NYHA 

class 

Dyssynchrony 

by MR 

Dyssynchrony 

by TDI 

Absolute Difference 

|MR-TDI|  
1 III 40 60 20 
2 III 40 30 10 
3 II-III 105 120 15 
4 III 72 60 12 
5 III 72 30 42 
6 III 36 60 24 
7 III 74 60 14 
8 III 30 0 30 
9 III 40 90 50 
10 III-IV 52 30 22 

Mean+/-Std III 56+/-24 54+/-34 24+/-13 
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Reproducibility 

The coefficient of variability between repeated measurements of peak velocity 

was 11.0 % for MR and 13.1 % for TDI, p=NS.  A Bland-Altman analysis showed a 

mean difference in peak velocity between repeated TDI measurements of 0.12+/-1.9 cm/s 

and a mean difference in peak velocity for repeated MR measurements of -0.51+/-2.1 

cm/s.  No repeated MR measurements fell outside two standard deviations (95% 

confidence interval) of the mean difference, while only one TDI measurement fell outside 

two standard deviations of the mean difference.  Figure 5.7 shows the Bland-Altman 

plots illustrating the reproducibility of peak velocity measurements for MR (left) and TDI 

(right).  The solid line denotes the average difference, and the dashed lines denote +/- 2 

standard deviations. 

 

 

Figure 5.7: Reproducibility of peak velocity measurements  



www.manaraa.com

 107 

 

The coefficient of variation for repeated time-to-peak velocity measurements was 

5.7% by MR and 9.1% by TDI, p=NS.  A Bland-Altman analysis of repeated MR 

measurements of time-to-peak velocity showed a mean difference closer to zero than did 

the mean difference of repeated TDI measurements of time-to-peak velocity (-3.3msec 

for MR vs. 6.7 msec for TDI).  Figure 5.8 shows the Bland-Altman plots illustrating the 

reproducibility for measuring the time-to-peak velocities by MR (left) and TDI (right).  

The solid line denotes the average difference, and the dashed lines denote +/- 2 standard 

deviations.  The standard deviation was lower for repeated MR measurements than for 

repeated TDI measurements (27.1 msec for MR vs. 37.5 msec for TDI).  Two repeated 

MR measurements fell outside two standard deviations (95% confidence interval) of the 

mean difference, while three TDI measurements fell outside two standard deviations of 

the mean difference.  Average percent difference in heart rate between repeated 

examinations was 4.6% for TDI and 5.1% for MR.   
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Figure 5.8: Reproducibility of time-to-peak velocity measurements  

 

Discussion 

This study presents an in vivo comparison of MR and TDI in normal subjects and 

patients with left ventricular dysfunction and dyssynchrony.  The ability to measure 

tissue velocity and time-to-peak velocity with MR provides an opportunity to validate 

measurements made by TDI, as well as an alternative technique to measure 

dyssynchrony.   

Measurements of peak velocities by MR and TDI correlated strongly, although 

the magnitude of peak velocities measured by MR consistently exceeded those measured 

by TDI.  Possible explanations for this discrepancy include foreshortening during 

acquisition of the TDI data or phase errors in the MR data, although we attempted to 

correct for both sources of such errors.  The slightly lower values of the correlation 
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coefficient observed in the dyssynchrony patients can be attributed to the lower tissue 

velocities observed in these patients, as lower velocity values will produce lower r-values 

when a correlation is computed.   

Excellent correlation was observed between MR PVM and TDI in measuring the 

time-to-peak velocity in both normal volunteers and dyssynchrony patients.  Furthermore, 

MR PVM and TDI agreed in measuring the time-to-peak velocity without bias.  This 

important finding supports the use of velocity measurements to identify dyssynchrony 

and predict response to CRT29,85.  Both MR and TDI showed good reproducibility for 

measuring the time-to-peak systolic and diastolic velocity, with the coefficient of 

variation slightly lower for MR than TDI (5.7 vs. 9.1%, p=NS).  The Bland-Altman 

analysis showed a slightly lower mean difference and standard deviation for MR PVM 

than TDI, suggesting that reproducibility of MR in measuring time-to-peak velocity 

slightly exceeds that of TDI, but the difference was not statistically significant.  Time-to-

peak systolic velocity is a highly reproducible TDI parameter, and our observations 

suggest that the reproducibility of MRI in measuring the time-to-peak velocity at least 

equals that of TDI. 

 

Previous Validations of MR PVM and TDI 

Although each technique has previously undergone in vitro validation or limited 

comparison to other imaging modalities, little data exists to support the validity of each 

measurement in patients with left ventricular conduction abnormalities and controls.  

Motion phantoms have previously verified the accuracy of TDI with a strong correlation 
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(r=0.99) between measured and true velocity153,154.  However, the validity of TDI for 

measuring velocity and time-to-peak velocity in patients with conduction system disease 

has gained wide acceptance without validation by other velocity imaging techniques.  

MR PVM has been shown to accurately and reproducibly measure blood velocity in 

imaging phantoms (errors <1.6% from true)138-140.  Coronary flow velocity by Doppler 

flow wire correlates well with MR measurements of blood velocity (r=0.913), and cine 

MR and MR PVM agree in the determination of regurgitant fraction and volume in 

patients with mitral regurgitation139.   

 

Measurements of Dyssynchrony 

Initial clinical data have highlighted the potential for using time-to-peak velocity 

as a measure of cardiac dyssynchrony.  A standard deviation of time-to-peak systolic 

velocity >34 msec across 12 regions in the left ventricle (the “dyssynchrony index”) 

predicted response to CRT with a sensitivity of 82% and specificity of 87%85.  Our 

prospective evaluation of time-to-peak velocity across the left ventricle by TDI supports 

its role as a predictor of clinical and echocardiographic response to CRT76.  The 

limitations imposed by anatomic imaging windows, dependence on sonographer skill, 

and interpreter experience on TDI underscores the need for another imaging technique to 

provide tissue velocity information.  Cardiac MR eliminates the limitations imposed by 

imaging windows and reduces dependence on sonographer skill.  The correlation between 

MR ant TDI techniques reinforces the value of each method. 
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Comparison to previously published data 

Our results are consistent with the two previous studies which have compared 

myocardial tissue velocities measured by MR PVM and TDI in vivo.  Jung et al., 2004 

compared radial myocardial velocity measured by MR PVM and TDI in a single region 

of interest in the posterior wall of 29 healthy subjects, and reported a correlation 

coefficient of R=0.97 between MR and TDI155.  Paelinck et al., 2005 compared tissue 

velocity between MR and TDI at a single location in the septal wall of patients with 

hypertensive heart disease and reported a correlation coefficient of R=0.89156.  We report 

a correlation coefficient of R=0.86 between MR and TDI for values acquired in both 

normal controls and dyssynchrony patients.  This value is comparable to Paelinck et al, 

but slightly lower than Jung et al., possibly because Jung et al. only looked at normal 

controls.   

 

Improvements in MR Technique 

 The MR technique employed in this study presents several improvements over the 

previous MR methods used to map velocity of wall motion48,53,147,155,157.  Previous PVM 

studies exclusively used breath-holding to compensate for respiratory motion, resulting in 

scans with relatively low spatial and temporal resolution.  Furthermore, the breathhold 

technique requires acquisition of velocity data for each direction in separate breathholds, 

producing image registration errors if the patient fails to hold breathing in the same 

anatomic point.  The breath-hold technique creates problems during imaging of many 

heart failure patients who cannot hold breathing for prolonged periods of time.  Other 
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studies have no respiratory compensation which can result in artifacts from breathing 

motion.  The technique used in this study included navigator-echo gating to compensate 

for respiratory motion.  Navigator-echo gating produces scans with high spatial and 

temporal resolution and velocity images with proper registration for each velocity 

direction. 

 

Study Limitations 

This analysis has certain limitations.  The small sample size may be responsible 

for failure of the difference in MR PVM and TDI reproducibility values to reach 

statistical significance.  The true velocity of the myocardial wall is not known, and 

therefore it cannot be concluded whether MR or TDI accurately measured myocardial 

wall velocity.  TDI depends highly on the angle of the transducer, with the chance that 

foreshortening of the image may underestimate the observed velocities.  Phase errors 

during acquisition can affect MR PVM and overestimate true velocity.  Performing the 

MR and TDI examinations at different times opens the possibility of physiological 

changes between the two examinations.  We attempted to minimize such differences by 

performing the TDI immediately after the MR.  MR acquires velocity data much slower 

than TDI and averages velocity data over many cardiac cycles.  Both MR and TDI have 

inherent limitations to imaging the mechanical delay of the myocardial wall in 

dyssynchrony and assessing the effect of therapy.  TDI cannot measure 3-dimensional 

velocities, and currently the safety of MR on patients with implanted devices remains 

undetermined.  Also, neither MR nor TDI perform true tissue tracking, and since the 
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location of the ROI for velocity measurement remains fixed, the region of myocardial 

tissue sampled varies throughout the cardiac cycle.   

 

Conclusions 

MR PVM can measure time-to-peak myocardial tissue velocity in patients with 

left ventricular dysfunction and cardiac conduction system disease.  The first in vivo 

comparison of MR PVM and TDI myocardial tissue velocities in normal subjects and 

dyssynchrony patients demonstrates that MR and TDI correlate strongly in measuring 

myocardial tissue velocity and time-to-peak velocity in both normal subjects and patients 

with dyssynchrony.  MR PVM and TDI have comparable reproducibility for measuring 

both peak velocity and time-to-peak velocity.  MR may provide an alternative method for 

detecting cardiac dyssynchrony. 
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CHAPTER 6 

AIM 4: DEVELOPMENT OF DATABASES DESCRIBING THE 

NORMAL MYOCARDIAL CONTRACTION PATTERN 

 

Introduction 

Myocardial contraction is a complex, three-dimensional movement involving 

longitudinal and radial shortening, torsion and shear.  Understanding myocardial motion 

is important because the myocardial contraction and relaxation pattern is a direct measure 

of the function and viability of the heart138.  Multiple studies have shown that alterations 

of this contraction pattern are predictive of cardiac disease and transplant 

rejection49,158,159.  However, before changes to this motion pattern can be identified, 

normal myocardial motion needs to be quantitatively described.   

The purpose of this study was 1) to develop a database describing the normal 

myocardial contraction and relaxation patterns (including velocity and time-to-peak 

velocity) and 2) to compare the contraction patterns in heart failure patients to the normal 

database to determine how myocardial motion is altered by dyssynchrony.   
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Methods 

Myocardial Tissue Velocity Data and Tracking In-vivo 

 Myocardial velocity data was acquired and processed as described in Chapter 3.  

Briefly, three-directional myocardial tissue velocities were acquired at three myocardial 

slices (apex, mid, base) using the finalized MR PVM protocol, which consisted of a 

segmented, ECG and navigator echo gated, phase contrast sequence.  Background phase 

errors were removed after image acquisition using a custom-developed Matlab program.   

 Myocardial tissue tracking was performed in all acquired datasets using the tissue 

tracking algorithm also described in Chapter 3.  Although velocity data for each study 

participant was acquired at three myocardial locations (basal, mid, and apical slices), the 

slices were separated by 10mm gaps.  Therefore, tissue tracking was performed 

independently for each slice, and longitudinal motion was dictated by velocity within the 

acquired slice, regardless of how far the particle moved in the thru-plane direction.   

 

Velocity Database from Tracked Myocardial Data 

10 normal volunteers without any history or evidence of cardiovascular disease 

were included in the database.  Mean age of the volunteers was 27.2+/-4.9 years, and 8 

were male.   

A normal database describing several different myocardial motion parameters was 

developed.  Because the goal of this project was to follow individual myocardial 
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segments throughout the cardiac cycle, the database was constructed using velocity 

computed by the tracking algorithm, not the velocity data as acquired directly with the 

MR PVM scan.   

Velocity values within the myocardium were averaged into the 16 AHA standard 

segments; averaging condensed the velocity data into three velocity curves (Vr, Vc, and 

Vz) in each of the 16 AHA myocardial segments.  In each segment, peak systolic 

velocity, peak diastolic velocity, time-to-peak systolic velocity, and time-to-peak diastolic 

velocity were measured.  A database giving the mean +/- two standard deviations of the 

normal value was constructed for each of these parameters.   

The process of searching for peak systolic and diastolic velocities was automated 

in Matlab.  Systole was defined as the period of the cardiac cycle between aortic valve 

opening and closing, while diastole was considered to be the portion of the cardiac cycle 

after aortic valve closing.  Aortic valve opening and closing times were determined from 

cine LV outflow tract images.  Within the systolic and diastolic portions of the 

myocardial velocity curve, the algorithm searched for the largest positive and negative 

peak values, respectively.  Furthermore, the restriction was imposed that peak systolic 

velocities had to be positive, while peak diastolic velocities had to be negative (for 

circumferential velocity within the apical slice, this requirement was reversed, and 

systolic velocity needed to be negative and diastolic velocities positive).  Segments in 

which the automatically-detected peak velocity values did not meet these criteria were 

excluded from the analysis.   



www.manaraa.com

 117 

Magnitudes and timing of peak velocities between velocity directions, systolic 

and diastolic peaks, and the three myocardial slices were compared using a Student’s t-

test with p-values <0.05 considered statistically significant.   

 

Dyssynchrony Measurements 

To assess intra-ventricular dyssynchrony, the magnitudes of peak velocities and 

the timing of peak velocities in the septal and lateral wall were compared.  The septal 

wall was defined as the average of AHA segments 2 and 3 in the basal slice, segments 8 

and 9 in the mid slice, and segment 14 in the apical slice.  The lateral wall was defined as 

the average of AHA segments 5 and 6 in the basal slice, segments 11 and 12 in the mid 

slice, and segment 16 in the apical slice.  Septal and lateral value were compared using a 

Student’s t-test with p-values <0.05 considered statistically significant.   

Dyssynchrony was measured using the septal-to-lateral wall motion delay (SLD) 

and the standard deviation of time-to-peak systolic velocity between the 12 mid and basal 

segments (TSD-12).  The septal-to-lateral wall motion delay (SLD) was computed as the 

absolute value of the difference between time-to-peak systolic velocity in the septal and 

lateral walls151.  The standard deviation of time to peak systolic velocity within the 12 

basal and mid segments (TSD-12) was also computed for each normal volunteer160.   

 Both SLD and TSD-12 were computed for each normal volunteer and each 

dyssynchrony patient.  The averages of the normal and patient values were compared 
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using a two-tailed un-paired Student’s t-test with p-value <0.05 considered statistically 

significant.   

 

Comparison of Tracked and Non-tracked Databases 

The effect of using tracked and non-tracked velocity data in the construction of 

the normal databases was examined.  Databases constructed using velocity data that had 

been output from the tracking algorithm (tracked data) were compared to databases 

constructed using velocity data directly acquired by the MR PVM velocity scan (non-

tracked data).   

Values of each of the original measured motion parameters (peak systolic 

velocity, peak diastolic velocity, time-to-peak systolic velocity, and time-to-peak 

diastolic velocity) from the tracked and the non-tracked databases were compared using 

Bland-Altman analysis.   

 

Comparison of Dyssynchrony Patients to the Normal Database 

Eight patients that had been referred to Emory University Hospital for cardiac 

resynchronization therapy underwent a cardiac MRI examination that included a MR 

PVM scan of myocardial tissue velocity prior to CRT device implantation.  Patients had 

ECG evidence of an intra-ventricular conduction delay (QRS > 120 msec), reduced 

cardiac function (LVEF< 40%), and all were in NYHA class III heart failure.   
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Images from the MR PVM scans were processed as in the same way as images for 

the normal database.  Background phase correction was performed, velocities were 

converted into radial, longitudinal, and circumferential velocities, motion tracking was 

performed, and the myocardium was registered to the standardized template as described 

in Chapter 3.   

Motion parameters (peak systolic velocity, peak diastolic velocity, time-to-peak 

systolic velocity and time-to-peak diastolic velocity) were computed for each of the 16 

myocardial segments, and patient values were compared to the values in the normal 

database.  Values more than two standard deviations from the normal mean were 

considered “abnormal” and were designated as potential markers of cardiac 

dyssynchrony.   

 

Individual Patient Data 

One overall goal of creating a normal database that quantitatively describes the 

myocardial contraction pattern was to allow individual patients to be compared to the 

statistical mean value.  Ideally, the normal database could be used to identify the location 

of regional dyssynchrony within the myocardium.   

To illustrate the feasibility of this approach, the timing of systolic contraction in 

two heart failures patients prior to CRT was compared to the normal database. Both 

patients were in class III NYHA heart failure, had LBBB and QRS duration >150msec; 
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these criteria make the likelihood of dyssynchrony in these patients very high.  Therefore, 

these patients can be considered a “positive control” for the presence of dyssynchrony. 

The patient value in each of the 16 AHA myocardial segments was compared to 

the normal database value in that segment.  Patient values in each segment were labeled 

as normal (for values within two standard deviations of the mean), early (time-to-peak 

velocity earlier than two standard deviations before the normal mean), or late (time-to-

peak velocity later than two standard deviations before the normal mean).   

 

Different Patient Outcomes with Tracked or Non-tracked Databases 

To test whether the choice of database (tracked or non-tracked) had an affect on 

characterization of patient data, patient values were compared to both the tracked and the 

non-tracked databases.  (Tracked patient data was compared to the normal tracked 

database, and non-tracked patient data was compared to the normal non-tracked 

database).  Segments were labeled as normal (for values within two standard deviations 

of the mean), low/early (velocity values below two standard deviations of the mean or 

time-to-peak velocity earlier than two standard deviations before the normal mean), or 

high/late (velocity values above two standard deviations of the mean or time-to-peak 

velocity later than two standard deviations before the normal mean).  Segments that were 

characterized differently by the tracked and non-tracked databases were flagged.   
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Results 

Myocardial Tissue Velocity Data and Tracking In-vivo 

 Velocity acquisition and tissue tracking was successfully carried out in all normal 

volunteers and heart failure patients.  Figure 6.1 shows an example of tissue tracking 

results from one of the normal volunteers.  Trajectories from adjacent pixels follow 

similar trajectories, and the trajectories of individual pixels do not leave the myocardium.   

Longitudinal displacement was a function of the imaging slice, decreasing with 

distance toward the apex (average longitudinal displacement =7.4+/-2.8mm in basal slice, 

5.8=/-2.8mm in mid slice, and  3.13+/-1.6mm in apical slice).   
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Figure 6.1:  In-vivo tissue tracking example 
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Velocity Database from Tracked Myocardial Data 

The database for each of the four motion parameters (peak systolic velocity, peak 

diastolic velocity, time-to-peak systolic velocity and time-to-peak diastolic velocity) was 

composed of 160 myocardial segments (16 segments from each of 10 normal volunteers).   

In three myocardial regions, the measurements of peak systolic circumferential 

velocity did not meet the pre-determined criteria (positive peak values during systole, 

negative peak values during diastole, peak systolic time between AVo and AVc, peak 

diastolic time after AVc) and were not included in the database.  These segments were 

from two different normal volunteers and all three were located in the lateral wall of the 

mid ventricular slice.  In the longitudinal direction, one apical septal segment did not 

meet criteria for peak systolic velocity and was not included in the database.  It is 

possible that the velocity measurements in these segments were corrupted by a noise 

susceptibility artifact often that is often observed within the lateral myocardial wall.   

 

Peak Velocities 

For the radial and longitudinal direction, peak velocities were positive during 

systole and negative during diastole.  In the circumferential direction, however, the sign 

of the velocity peak depended on location within the myocardium.  Peak circumferential 

velocities during systole were positive (clockwise rotation) in the basal slice and negative 

(counter-clockwise rotation) in the apical slice.  During diastole, negative (counter-



www.manaraa.com

 124 

clockwise) motion was observed in the basal slice and positive (clockwise) motion was 

observed in the apical slice.   

Table 6.1 lists the mean and standard deviation of the peak velocity measured 

during systole and diastole in each of the 16 AHA myocardial segments.  Segments 1-6 

are located in the basal slice, segments 7-12 are in the mid slice, and segments 13-16 are 

located in the apical slice.  (The convention was to define radial velocity as positive for 

motion toward the center of the LV blood pool, circumferential velocity as positive for 

clockwise rotation when viewed from the apex, and longitudinal velocity as positive for 

motion toward the apex).   
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Table 6.1:  Peak velocity database from tracked data 

 

AHA 
Segment # 

Peak Systolic Velocity 

(cm/s) 

Peak Diastolic Velocity 

(cm/s) 

 Vr Vc Vz Vr Vc Vz 

1 4.2+/-1.1 1.5+/-0.7 3.2+/-1.5 -5.1+/-1.5 -1.7+/-0.9 -7.7+/-2.1

2 2.6+/-1.2 1.9+/-0.8 3.2+/-0.5 -3.0+/-1.3 -1.7+/-1.2 -6.7+/-2.0

3 2.1+/-0.7 2.9+/-1.0 3.8+/-0.7 -4.1+/-1.5 -2.2+/-1.0 -7.0+/-2.0

4 2.9+/-1.3 2.7+/-1.0 5.6+/-2.2 -4.6+/-1.3 -2.7+/-1.0 -7.9+/-2.7

5 3.3+/-1.3 2.3+/-1.1 6.7+/-2.2 -4.9+/-2.0 -2.1+/-0.8 -10.5+/-3.5

B
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6 3.5+/-0.8 2.2+/-0.9 6.2+/-1.7 -5.9+/-1.5 -2.6+/-0.8 -10.5+/-2.4

7 2.9+/-0.7 1.3+/-0.6 3.2+/-1.6 -5.1+/-1.3 -1.9+/-0.9 -5.2+/-1.6

8 2.2+/-0.6 2.0+/-0.6 2.7+/-1.4 -4.6+/-1.6 -1.4+/-0.7 -5.0+/-1.6

9 2.4+/-0.7 1.9+/-0.9 3.3+/-1.4 -4.3+/-1.4 -1.6+/-0.4 -4.2+/-2.2

10 3.1+/-0.8 1.2+/-0.5 5.2+/-1.6 -4.9+/-1.2 -1.9+/-1.0 -6.6+/-2.2

11 2.9+/-1.2 1.1+/-0.4 6.1+/-1.4 -5.9+/-1.5 -1.8+/-1.0 -8.6+/-2.3

M
id
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e 
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12 3.8+/-1.2 1.1+/-0.8 4.9+/-1.6 -5.8+/-2.1 -2.0+/-1.1 -7.1+/-1.8

13 2.0+/-1.0 -4.5+/-1.2 2.4+/-0.8 -4.5+/-1.0 3.1+/-0.6 -3.0+/-1.6

14 2.1+/-0.9 -2.7+/-1.3 1.4+/-0.8 -3.1+/-1.4 1.4+/-0.4 -1.9+/-1.3

15 3.4+/-1.2 -1.7+/-1.5 3.2+/-1.1 -3.7+/-1.2 2.6+/-1.0 -2.0+/-1.1

A
pi
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16 3.7+/-1.6 -2.8+/-1.2 4.6+/-1.1 -5.2+/-1.6 3.1+/-1.3 -4.4+/-1.5
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Throughout the entire LV, the magnitude of peak longitudinal velocities was 

significantly (p<0.05) larger than the magnitude of either peak radial or circumferential 

velocities, both during systole and diastole, Table 6.2.  Peak radial velocities were 

significantly larger in magnitude than peak circumferential velocities (p<0.05), both 

during systole and diastole.   

Within a given slice, the magnitudes of peak radial, circumferential, and 

longitudinal velocities were all significantly different (p<0.05), with the exception of 

peak radial and longitudinal velocities in the apical slice during systole.   

In general, peak diastolic velocities were greater in magnitude than peak systolic 

velocities.  This difference was significant (p<0.05) in the radial direction for all three 

myocardial slices, in the longitudinal direction for the basal and mid slices, and in the 

circumferential direction for the mid slice.  No significant difference was observed 

between the magnitudes of peak systolic and diastolic velocities in the circumferential 

direction in either the basal (p=0.51) or apical (p=0.68) slices, or in the longitudinal 

direction in the apical slice (p=0.68).   

The magnitudes of peak radial velocities were not significantly different between 

the basal, mid, and apical slices.  The magnitude of peak circumferential velocity was 

greatest in the apical slice and smallest in the mid slice.  The magnitude of peak 

longitudinal velocity decreased with distance toward the apex, with the largest velocities 

observed in the basal slice and the smallest in the apical slice.  In the longitudinal 

direction, the difference in peak velocity magnitudes was significant (p<0.05) between all 

slices, both during systole and diastole.  In the circumferential direction, the magnitude of 
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peak velocity was significantly different between all slices during systole (p<0.05), but 

during diastole the apical and basal slices were not significantly different.  

 

Table 6.2: Magnitudes of Peak Velocities by imaging slice 

Peak Systolic Velocity (cm/s)  

 |Vr| |Vc| |Vz| 
Basal 3.1+/-1.2 2.3+/-1.0 4.8+/-2.1 

Mid 2.9+/-1.0 1.5+/-0.7 4.2+/-2.1 

Apical 2.8+/-1.4 2.9+/-1.6 2.9+/-1.5 

Entire LV 2.9+/-1.2 2.1+/-1.3 4.1+/-2.0 

Peak Diastolic Velocity (cm/s)  

Basal 4.6+/-1.7 2.2+/-1.0 8.4+/-2.9 

Mid 5.1+/-1.6 1.8+/-0.9 6.1+/-2.4 

Apical 4.1+/-1.5 2.6+/-1.1 2.8+/-1.7 

Entire LV 4.7+/-1.6 2.1+/-1.0 6.2+/-3.3 

 

 

Differences between the septal and lateral walls 

Throughout the entire LV, the magnitude of peak velocities observed in the septal 

wall was lower than the magnitude of peak velocities observed in the lateral wall, Table 

6.3.  The difference between septal and lateral wall peaks was significant (p<0.05) for all 

slices in the radial and longitudinal directions, both during systole and diastole.  Peak 

circumferential velocities remained fairly constant throughout the entire LV, although a 

difference between septal and lateral wall velocities was detected in the middle slice 

during systole and the apical slice during diastole.   
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Table 6.3: Magnitudes of Peak Velocities in the Septal and Lateral Walls 

Peak Systolic Velocity (cm/s)  

  Basal  Mid  Apical 

Septal 2.3+/-1.0 2.3+/-0.6 2.1+/-0.9 

Lateral 3.4+/-1.1 3.3+/-1.3 3.7+/-1.6 

Vr 

p-value p<0.05 p<0.05 p<0.05 

Septal  2.4+/-1.0 1.9+/-0.7 2.7+/-1.3 

Lateral 2.2+/-0.9 1.1+/-0.6 2.8+/-1.2 

Vc 

p-value p=0.54 p<0.05 p=0.84 

Septal  3.5+/-0.7 3.0+/-1.4 1.4+/-0.8 

Lateral 6.4+/-2.0 5.5+/-1.6 4.6+/-1.1 

Vz 

p-value p<0.05 p<0.05 p<0.05 

Peak Diastolic Velocity (cm/s) 

Septal 3.6+/-1.5 4.4+/-1.4 3.1+/-1.4 

Lateral 5.4+/-1.8 5.9+/-1.7 5.2+/-1.6 

Vr 

p-value p<0.05 p<0.05 p<0.05 

Septal  1.9+/-1.1 1.5+/-0.6 1.4+/-0.4 

Lateral 2.3+/-0.8 1.9+/-1.0 3.1+/-1.3 

Vc 

p-value p=0.19 p=0.14 p<0.05 

Septal  6.9+/-1.9 4.6+/-1.9 1.9+/-1.3 

Lateral 10.5+/-2.9 7.9+/-2.2 4.4+/-1.5 

Vz 

p-value p<0.05 p<0.05 p<0.05 
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Figure 6.2 displays Bulls-Eye plots of peak velocities in each of the 16 

myocardial segments, both during systole and diastole.  The longitudinal apex-to-base 

gradient and the difference in the magnitude of peak velocity between the septal and 

lateral walls are clearly visible.  Also easy to identify is the opposite direction of rotation 

between the basal and apical slices.   

 Figure 6.3 displays the information presented in Figure 6.2 a slightly different 

way.  Peak velocity is plotted versus myocardial segment, allowing width of the mean +/- 

2 standard deviations of the normal value to be shown.  This figure shows that the 

variability in the magnitude of peak velocities within the normal volunteers was fairly 

small.  The largest inter-normal variation was observed for peak longitudinal velocity 

during diastole, the parameter with the largest velocity magnitude.   

 In Figure 6.3 it is also possible to observe the different rotation directions between 

the apical and basal slices in the circumferential velocity direction as the sharp change of 

the circumferential velocity curves at segment 13.  Also in Figure 6.3, the difference in 

peak longitudinal velocity magnitude between the septal and lateral walls can be 

observed as an undulation in the longitudinal velocity values, with peak values being 

lower in myocardial segments 2 and 3 (septal wall, basal slice), higher in segments 5 and 

6 (lateral wall, basal slice), lower in segments 8 and 9 (septal wall, middle slice), higher 

in segments 11 and 12 (lateral wall, middle slice), lower in segment 14 (septal wall, 

apical slice), and higher in segment 16 (lateral wall, apical slice).  
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Figure 6.2: Bulls-eye plot of peak velocities during systole and diastole 
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Figure 6.3: Mean +/-2std of peak velocity in tracked database  
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Time-to-Peak Velocities 

Table 6.4 lists the measured values of time-to-peak for systolic and diastolic 

velocities in each of the 16 AHA myocardial segments.  The mean and standard deviation 

of time-to-peak radial, circumferential, and longitudinal velocity in each AHA 

myocardial segment is given.  Recall that measurements of time are given as msec from 

the detection of the R-wave in the QRS complex.   

During systole, small differences in the timing of peak velocities were observed 

between the three velocity directions, Table 6.5.  In general, peak longitudinal velocity 

was detected first, followed by peak radial velocity and then peak circumferential 

velocity.  This pattern was observed in both the basal and mid slices, with the timing 

difference between all velocity directions being significant (p<0.05).  In the apical slice, 

peak systolic longitudinal velocity was also detected first, but the order of radial and 

circumferential velocities was reversed with peak circumferential velocity detected 

before peak radial velocity.  In the apical slice, the difference in timing between the 

longitudinal and circumferential velocity directions was not significant (p=0.21). 

During diastole, no significant differences in the values of time-to-peak velocities 

were detected between radial, circumferential, or longitudinal velocities in any of the 

three myocardial slices examined.  In other words, peak diastolic relaxation velocities 

were detected as occurring uniformly throughout the entire LV for all three directions of 

velocity.   
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Table 6.4:  Peak velocity database from tracked data 

AHA 
Segment 

# 

Time-to-Peak Systolic 
Velocity 

(msec after R-wave detection) 

Time-to-Peak Diastolic 
Velocity 

(msec after R-wave detection) 

  Vr Vc Vz Vr Vc Vz 

1 105.3+/-
17.7 

169.6+/-
43.0 

143.9+/-
57.6

505.8+/-
47.4 

534.5+/-
106.5 

511.1+/-
29.6 

2 105.4+/-
35.1 

189.8+/-
61.8 

146.6+/-
51.9

511.2+/-
97.9 

562.4+/-
91.1 

516.2+/-
37.2 

3 176.9+/-
49.3 

187.5+/-
29.9 

138.8+/-
51.4

554.9+/-
37.8 

495.9+/-
80.1 

503.3+/-
34.1 

4 169.3+/-
43.1 

200.3+/-
35.0 

97.6+/-
17.8

493.2+/-
36.2 

482.6+/-
119.5 

513.6+/-
44.6 

5 141.2+/-
29.0 

187.5+/-
60.6 

95.0+/-
20.8

475.1+/-
34.2 

485.9+/-
75.1 

503.4+/-
35.0 

B
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6 136.0+/-
27.0 

169.5+/-
46.5 

97.5+/-
17.4

480.2+/-
35.4 

521.1+/-
77.8 

511.0+/-
32.8 

7 136.3+/-
41.5 

174.8+/-
45.4 

116.1+/-
57.0

510.6+/-
64.8 

585.3+/-
134.1 

518.9+/-
29.2 

8 153.8+/-
52.2 

190.0+/-
39.1 

125.8+/-
50.3

539.3+/-
43.5 

595.5+/-
124.1 

516.3+/-
34.1 

9 182.2+/-
30.6 

195.2+/-
37.7 

113.0+/-
33.6

539.4+/-
33.4 

524.0+/-
106.4 

508.6+/-
27.9 

10 174.4+/-
44.7 

189.7+/-
48.7 

95.0+/-
16.9

516.2+/-
39.5 

503.4+/-
85.7 

511.1+/-
24.6 

11 164.3+/-
53.7 

198.1+/-
45.9 

92.4+/-
15.9

503.3+/-
36.7 

516.3+/-
100.6 

518.8+/-
38.7 

M
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12 120.6+/-
26.3 

183.4+/-
65.1 

95.0+/-
16.9

505.9+/-
37.7 

505.9+/-
82.7 

508.6+/-
35.8 

13 159.5+/-
65.9 

94.9+/-
16.8 

92.4+/-
10.6

526.6+/-
32.8 

462.2+/-
132.1 

495.7+/-
45.2 

14 195.1+/-
24.4 

115.4+/-
62.2 

147.0+/-
75.7

546.9+/-
46.7 

508.4+/-
126.0 

506.2+/-
66.6 

15 177.1+/-
31.4 

171.6+/-
82.7 

87.3+/-
12.1

510.8+/-
57.3 

582.4+/-
77.5 

526.5+/-
140.9 A

pi
ca

l S
lic

e 

16 143.6+/-
71.2 

89.9+/-
14.7 

89.9+/-
8.0

508.6+/-
37.8 

480.1+/-
92.6 

510.9+/-
52.8 
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Table 6.5: Timing of Peak Velocities by myocardial slice and velocity direction 

Time-to-Peak Systolic Velocity 

(msec after detection of R-wave) 

 Vr Vc Vz 

Basal 139+/-44 184+/-47 120+/-45 

Mid 155+/-46 189+/-46 106+/-37 

Apical 169+/-54 118+/-61 103+/-43 

Entire LV 153+/-49 169+/-58 111+/-42 

Time-to-Peak Diastolic Velocity 

(msec after detection of R-wave) 

Basal 503+/-57 514+/-94 510+/-35 

Mid 519+/-45 538+/-109 514+/-31 

Apical 523+/-46 508+/-115 510+/-83 

Entire LV 514+/-50 522+/-105 511+/-50 

 

 

Differences between the septal and lateral walls 

 Peak velocity in the lateral wall was detected slightly earlier than peak velocity in 

the septal wall in the longitudinal direction during systole and the radial direction during 

diastole.  No other significant differences in timing between the septal and the lateral 

walls were observed, Table 6.6.   
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Table 6.6: Time-to-peak Velocity in the Septal and Lateral Walls  

Time-to-Peak Systolic Velocity 
 (msec after detection of the R-wave) 

  Basal Slice Mid Slice  Apical Slice 

Septal 141+/-55 168+/-44 195+/-24 

Lateral 139+/-27 142+/-47 144+/-71 

Vr 

p-value p=0.86 p=.08 p=0.05 

Septal  189+/-47 193+/-37 115+/-62 

Lateral 178+/-53 191+/-54 90+/-15 

Vc 

p-value p=0.53 p=0.93 p=0.24 

Septal  143+/-50 119+/-42 147+/-76 

Lateral 96+/-19 94+/-16 90+/-8 

Vz 

p-value p<0.05 p<0.05 p=0.05 

Time-to-Peak Diastolic Velocity 
 (msec after detection of the R-wave) 

Septal 533+/-76 539+/-38 547+/-47 

Lateral 478+/-34 505+/-36 509+/-38 

Vr 

p-value p<0.05 p<0.05 p<0.05 

Septal  529+/-90 560+/-118 508+/-126 

Lateral 504+/-77 511+/-90 480+/-93 

Vc 

p-value p=0.34 p=0.15 p=0.57  

Septal  510+/-35 512+/-31 506+/-67 

Lateral 507+/-33 514+/-37 511+/-53 

Vz 

p-value p=0.82 p=0.91 p=0.86 
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Figure 6.4 displays Bulls-Eye plots of the measured time-to-peak velocity during 

systole and diastole for the three directions of motion.  Note that the measurements of 

time-to-peak velocity are uniform throughout the entire LV, both during systole and 

diastole.  Also easy to appreciate is the larger variation within the LV for measurements 

of time-to-peak circumferential velocity.   

Figure 6.5 shows the mean +/- 2 standard deviations of the normal value of time-

to-peak velocity measurements during systole and diastole.  The figure clearly illustrates 

that peak diastolic relaxation velocity was observed uniformly throughout the entire left 

ventricle, both in the radial and longitudinal directions.  It is clearly visible from Figure 

6.5 that the standard deviation of time-to-peak velocity measurements was greatest in the 

circumferential direction.   
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Figure 6.4: Time-to-peak velocity database from tracked data  
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Figure 6.5:  Mean +/-2std of time-to-peak velocity in tracked database 
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Dyssynchrony Measurements 

Septal-to-Lateral Wall Motion Delay 

 For the normal volunteers, the average septal-to-lateral wall motion delay (SLD) 

throughout the mid and basal slices was 29.5+/-24.5msec in the radial direction, 37.2+/-

44.4msec in the circumferential direction, and 35.2+/-44.7msec in the longitudinal 

direction.  For the eight heart failure patients, average SLD was 48.2+/-54.5msec in the 

radial direction, 71.1+/-59.6msec in the circumferential direction, and 76.3+/-42.8msec in 

the longitudinal direction.  Values of the SLD in the normal volunteers and the 

dyssynchrony patients are given in Table 6.7.  (Note: SLD is given a NaN value if a 

segment in either the septal or the lateral wall did not meet the criteria for being 

considered a peak value).  

Figure 6.6 illustrates the average SLD across the mid and basal slices in the 

normal volunteers and heart failure patients.  Although patient values of SLD were 

consistently larger than normal values, the difference was only significant in the 

longitudinal direction (p<0.05), and not in the radial (p=0.2) or circumferential directions 

(p=0.1).  p-values <0.05 are denoted by * in Figure 6.6.   
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Table 6.7: Septal-to-Lateral Wall Motion Delay (msec) 

Velocity 
Direction Radial  Circumferential  Longitudinal  

Slice Basal  Mid  Basal Mid Basal Mid 

Normal Volunteers 

Normal 1 25 64 0 13 64 115 

Normal 2 38 13 77 0 25 13 

Normal 3 0 0 191 102 13 25 

Normal 4 52 13 13 0 13 78 

Normal 5 0 13 39 26 26 0 

Normal 6 38 64 25 25 51 13 

Normal 7 13 89 13 25 89 0 

Normal 8 13 26 0 25 51 0 

Normal 9 26 13 27 26 132 13 

Normal 10 51 38 26 51 0 0 

Average 26 33 41 29 46 26 

stdev 19 29 57 29 41 39 

Heart Failure Patients 

Patient 1 12.5 75.0 125.0 50.0 12.5 75.0 

Patient 2 25.5 76.5 127.5 25.5 102.0 178.5 

Patient 3 39.7 0.0 39.8 119.3 92.8 26.5 

Patient 4 0.0 38.3 63.8 NaN 0.0 51.0 

Patient 5 51.0 229.5 140.3 127.5 38.2 242.3 

Patient 6 67.5 13.5 13.5 27.0 54.0 13.5 

Patient 7 13.2 39.7 53.0 92.8 79.5 26.5 

Patient 8 63.8 25.5 76.5 63.8 89.3 127.5 

Average 34.2 62.3 79.9 72.3 58.5 92.6 

stdev 25.2 72.7 46.2 41.8 38.6 82.8 
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Figure 6.6:  Septal-to-lateral Wall motion Delay  

 

TSD-12 

 In the normal volunteers, TSD-12 values were lowest in the circumferential 

direction and largest in the radial direction.  In the heart failure patients, TSD-12 values 

were smallest in the radial direction and largest in the circumferential direction.  TSD-12 

values for the normal volunteers and dyssynchrony patients are listed in Table 6.8.   

 For all the directions of motion, the average TSD-12 was lower in the normal 

volunteers than the heart failure patients.  However, the difference was only significant in 

the circumferential and longitudinal, and not the radial (p=0.1) directions, Figure 6.7.  * 

denotes p-values <0.05.   
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Figure 6.7: Standard deviation of time-to-peak in 12 basal and mid segments 
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Table 6.8:  TSD-12 in Normal Volunteers and Heart Failure Patients  

Standard Deviation of Time to Peak in 12 mid and basal segments (TSD-12) in msec 

 

 Vr Vc Vz 

Normal Volunteers 

Normal 1 38.2 17.2 48.0 

Normal 2 36.1 45.0 13.1 

Normal 3 29.8 98.5 14.7 

Normal 4 35.6 23.4 36.5 

Normal 5 33.9 16.9 13.4 

Normal 6 45.9 17.0 49.8 

Normal 7 55.9 13.1 43.9 

Normal 8 58.9 11.9 49.2 

Normal 9 37.5 21.1 72.8 

Normal 10 46.3 27.6 7.4 

Average 41.8 29.2 34.9 

stdev 9.7 26.2 21.6 

Heart Failure Patients 

Patient 1 38.9 69.5 51.6 

Patient 2 72.5 93.2 100.7 

Patient 3 75.3 83.4 83.7 

Patient 4 32.3 62.5 34.1 

Patient 5 93.7 126.5 98.4 

Patient 6 43.1 72.2 63.6 

Patient 7 48.5 47.2 73.5 

Average 54.4 78.5 72.1 

stdev 23.2 23.7 22.6 

p-value (patients. vs. 
normals) p=0.1 p<0.05 p<0.05 
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Comparison of Tracked and Non-Tracked Databases 

 The mean difference in peak systolic velocity between the tracked and non-

tracked databases was less than 1cm/s in either the radial, circumferential, and 

longitudinal directions, Table 6.9.  The largest difference in peak velocity between the 

two databases was observed for peak longitudinal velocity during diastole, in which the 

velocities magnitudes are greatest.  Mean difference in peak longitudinal velocity during 

diastole was 2.4+/-1.1cm/s.  The difference between tracked and non-tracked was smaller 

for radial (1.4+/10.6cm/s) and circumferential (-0.4+/-0.7cm/s) velocities.   

 Much less variability was observed in the measurement of time-to-peak velocities 

between the two databases, where the maximum difference between the tracked and the 

non-tracked database was 15msec.  This difference is less than one frame-to-frame 

interval in the underlying MR PVM velocity data.  Larger differences were observed in 

the measurement of time-to-peak systolic velocity than time-to-peak diastolic velocity, 

possibly because diastolic relaxation is a much more rapid process than systolic 

contraction.  During systole, the difference between time-to-peak velocity was 15.0+/-

18.8msec in the longitudinal direction, 1-3.8+/-20.8 msec in the circumferential direction, 

and 11.9+/-14.7msec in the radial direction.  During diastole, differences between the 

tracked and non-tracked databases for measurements of time-to-peak velocity were -

2.9+/-13.0msec for longitudinal velocity, 2.8 +/-37.4msec for circumferential velocity, 

and -2.3+/-10.8msec for radial velocity.  Again, the measured difference is less than one 

frame-to-frame interval in the underlying MR PVM velocity data.   The Bland-Altman 
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plots for all four measured parameters in each of the three velocity directions are shown 

in Figures 6.8 and 6.9.   

 

Table 6.9: Mean difference between tracked and not tracked databases  

 Radial 
Direction 

Circumferential 
Direction 

Longitudinal 
Direction 

Peak Systolic Velocity (cm/s) -0.6+/-0.2 -0.3+/-0.5 -0.7+/-0.3 

Peak Diastolic Velocity (cm/s) 1.4+/-0.6 0.4 +/-0.7 2.4+/-1.1 

    

Time-to-peak systolic velocity 
(msec) 

-11.9+/-14.7 -3.8+/-20.8 -15.0+/-18.8 

Time-to-Peak diastolic velocity 
(msec) 

-2.3+/-10.8 -2.8+/-37.4 2.9+/-13.0 
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Figure 6.8:  Bland-Altman plots of peak velocities from tracked and non-tracked data 
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Figure 6.9:  Bland-Altman plots of time-to- peak velocities from tracked and non-tracked 
data 
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Comparison of Dyssynchrony Patients to the Normal Database 

Individual Patient Data 

Patient 4 

Patient 4 is a 71 year old male with Left Bundle Branch Block (LBBB) and NYHA 

class III heart failure that is ischemic in origin.  Pre-CRT QRS duration was 170msec.  

The clinical cardiac MR report revealed that assessment of myocardial thickness from 

cine SSFP images showed a wall thickening defect suggestive of infarct scar in the 

inferior wall.   

Comparison of the timing of peak systolic velocity in the patient to the normal 

database revealed several delayed regions (segments in which the time-to-peak value for 

the patient occurred later than the mean value plus two standard deviations).  No patient 

segments were labeled as contracting early (earlier than the normal mean minus two 

standard deviations).  Delayed contraction was not detected in any radial segments.  In 

the circumferential direction, delayed contraction was detected in the lateral wall of the 

apical and basal slices, and the anterior wall of the middle slice.  In the longitudinal 

direction, a delay in time-to-peak systolic velocity was detected in the lateral wall of the 

mid and apical slices, and in the inferior wall of all three slices.   

Figure 6.10 shows the Bulls-Eye maps of time-to-peak systolic velocity in the patient 

compared to the normal database.  Segments shown in red were delayed when compared 

to the normal database, segments shown in blue contracted early, and segments shown in 

gray were within two standard deviations of the normal mean.  Areas of the myocardium 
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where a positive peak systolic value could not be detected between aortic valve opening 

and closing time are designated as “No Value.”   

 

Figure 6.10:  Bulls-eye plot of patient 4 compared to the normal database 

 

 In summary, a delay in time-to-peak systolic velocity was observed in the lateral 

wall for patient 4 in the circumferential and longitudinal directions.  No delay in time-to-

peak systolic velocity was seen in the radial direction.  In the longitudinal direction, 

delayed systolic contraction was also observed in the inferior wall in the area 

corresponding to the location of the known infarct.   

 

Patient 5 

Patient 5 is a 66 year old male with LBBB and NYHA class III heart failure.  Pre-

CRT QRS duration was 194 msec.  The patient’s heart failure was listed as being non-
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ischemic in origin, and the clinical cardiac MR report detected no areas of focal 

hyperenhancement, consistent with the absence of myocardial scarring or infarction.  

However, the perfusion report showed delayed perfusion in the mid to distal septum.   

When the time-to-peak systolic velocity values for this patient were compared to the 

normal database, several areas of delayed contraction were identified.  The radial 

direction showed delayed segments in the septal, anterior, and inferior walls.  The 

circumferential direction showed a delay in time-to-peak within the lateral and anterior 

walls, and time-to-peak systolic velocity in the longitudinal direction was delayed in the 

entire lateral wall, as well as the mid and apical septum.  Time-to-peak systolic velocity 

was not detected as occurring earlier than two standard deviations of the normal mean in 

any myocardial region, in either of the three velocity directions.    

The Bulls-Eye plot showing the delayed segments for patient 5 is shown in Figure 

6.11.  As with the previous example, normal segments are shown in gray, delayed 

segments are shown in red, and early segments are shown in blue.  Segments in which a 

positive peak systolic value could not be detected between aortic valve opening and 

closing time are designated as “No Value.”   
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Figure 6.11:  Bulls-eye plot of patient 5 compared to the normal database 

 

In summary, a delay in time-to-peak systolic velocity in the lateral wall was observed 

in the circumferential and longitudinal directions for patient 5.  Delayed contraction in 

the longitudinal and radial directions was also observed in the septum at a location 

corresponding to the area of delayed perfusion.   

 

Different Classifications with the tracked or non-tracked databases 

On average, 8.0+/-0.5% of segments in each patient received a different 

characterization depending on if the tracked or non-tracked databases were used.  In no 

patient was the classification of more than 10% of segments different.   

The location of the myocardial segment did not have a strong affect on whether 

segments were categorized differently.  An average of 8.0+/-0.6% of the total segments at 
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each AHA location received a different label when compared to the normal database 

using the tracked or non-tracked data.  In no myocardial location did more than 10% of 

segments receive a different label when compared to the tracked or non-tracked 

databases.   

 A trend was observed between the direction of motion and segments receiving 

different outcomes when compared using the tracked or non-tracked databases.  For peak 

velocity measurements, the number of segments with different outcomes was 

significantly larger in the circumferential direction than the radial or longitudinal 

directions, Figure 6.12.  The largest difference was observed for peak circumferential 

velocity during systole, where 25% of segments were labeled differently (compared with 

18% of segments in the radial direction and 18% of segments in the longitudinal 

direction).   The same trend was observed during diastole, where 11% of segments in the 

circumferential direction, and 7% of segments in the radial and  longitudinal directions 

were labeled differently depending on if the tracked or non-tracked databases were used.   
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Figure 6.12: Segments with different outcomes for peak velocity measurements 

 

 A similar trend was observed for measurements of time-to-peak velocities, 

although the total number of segments with different outcomes was significantly smaller, 

Figure 6.13.  In general, greater variability was observed in measurements of time-to-

peak systolic velocity than measurements of time-to-peak diastolic velocity.  The largest 

variability was observed for measurements of time-to-peak systolic circumferential 

velocity where 4% of segments were labeled differently, compared to 0% of segments in 

the radial direction and no segments in the longitudinal direction.  During diastole, an 

even smaller number of segments received different labels when compared to the tracked 

or non-tracked databases: 2% of segments in the radial and circumferential directions, 

and no segments in the longitudinal direction.  
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Figure 6.13:  Segments with different outcomes for time-to-peak velocity measurements 

 

 

Discussion 

Databases describing the four parameters of the normal myocardial contraction 

pattern (peak systolic velocity, peak diastolic velocity, time-to-peak systolic velocity, and 

time-to-peak diastolic velocity) were constructed from a group of ten normal volunteers.  

Databases were constructed using both tracked and non-tracked velocity data, and it was 

determined that the choice of velocity data did not have a major affect on the value of the 

database parameters.  Velocity data was also acquired in eight heart failure patients prior 

to CRT implantation, and patient values were compared to the normal databases, both on 

an individual patient basis and as a group.  Systolic dyssynchrony values (SLD and TSD-
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12) were computed for both the normal and patient populations, and significantly higher 

levels of dyssynchrony were detected in the patient population for both parameters.  

 

Peak velocities 

Peak velocity measurements within the normal database illustrated several main trends: 

1. The direction of circumferential velocity changed along the long-axis of the LV, 

with basal and apical slices twisting in opposite directions.   

2. Peak velocities measured in the longitudinal direction were consistently the 

largest velocity magnitude, while peak circumferential velocities were 

consistently the smallest in magnitude.  This finding held true during both systole 

and diastole.  

3. Peak diastolic velocities were larger than peak systolic velocities in all three 

directions of velocity.  

4. Peak radial velocities were relatively constant between the apical, mid, and basal 

slices.  Peak circumferential velocities were largest in the apical slice and smallest 

in the mid slice. Peak longitudinal velocities decreased with distance toward the 

apex, with the greatest velocities observed in the basal slice and the smallest 

velocities observed in the apical slice.   

5. Peak circumferential velocities were relatively consistent throughout the entire 

imaging slice.  Peak radial and longitudinal velocities, however, were consistently 
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larger in the lateral wall than the septal wall; this difference was observed across 

all three myocardial slices, both during systole and diastole.  This observation can 

be explained by tethering effects from the right ventricle in the septal wall which 

restrict motion.   

The normal database depicted the value of peak velocity within each myocardial 

segment averaged over the ten normal volunteers.  It is reassuring to observe that the 

standard deviations of these average velocities were fairly small (Figure 6.3), indicating 

that at least within this population, the values of peak velocities are consistent.  The 

widest standard deviation was observed for measurements of peak circumferential 

velocity during diastole.  The magnitude of peak circumferential velocities was 

significantly less than the magnitudes of peak radial or longitudinal velocities, 

particularly during diastole.  Since the same velocity encoding value (Venc=30cm/s) was 

used to encode velocities in all three directions, the lower velocities in the circumferential 

direction would have resulted in a lower velocity-to-noise ratio; this may help explain the 

larger standard deviation in the measurements.   

 During data analysis, the restriction was imposed that peak velocities during 

systole had to be positive, while peak velocities during diastole had to be negative.  

Essentially this imposed a minimum threshold or cutoff value on the peak velocities.  In 

the present analysis, the value of this threshold was set at zero, but the threshold can be 

increased as a means of removing akinetic segments from the analysis.  The present 

analysis was focused on constructing a database from normal velocity data, so such a 

threshold was not imposed at this time.   
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Time-to-peak velocities  

The main findings for measurements of time-to-peak velocity throughout the normal 

myocardium were:  

1. Time-to-peak velocity is uniform throughout the entire LV and across all ten 

normal volunteers.  

2. Radial and longitudinal time-to-peak measurements are more robust than 

circumferential time-to-peak measurements.  

3. No consistent, significant differences in timing between the septal and the lateral 

walls of the myocardium were observed.   

The standard deviation of time-to-peak velocity measurements was significantly 

larger in the apical slice than either the mid or basal slices (Figure 6.5).  This may be at 

least partially explained by the image acquisition method.  During acquisition, rest slabs 

were placed on both sides of the imaging slab, not on either side of each imaging slice.  

Therefore, the signal from inflowing blood was nulled effectively in the basal and mid 

slices, but by the time the blood reached the apical slice, it had sufficient time to regain at 

least some signal strength, so the contrast between blood and myocardial tissue was 

decreased in the apical slice.  This may have decreased the accuracy of measurements 

taken in the apical slice and thereby, increased the standard deviation of apical values in 

the normal database.  For this reason, the apical myocardial segments (AHA segments 

13-16) were excluded from the analysis of dyssynchrony.   

 



www.manaraa.com

 158 

Dyssynchrony Measurements 

 In the normal volunteers, myocardial contraction should be synchronous, and, 

ideally, the septal-to-lateral wall motion delay (SLD) should be zero.  In most normal 

volunteers, the observed SLD was a single myocardial frame.  This can be attributed to 

measurement error and does not imply an underlying level of dyssynchrony in the normal 

population.  

Two normal volunteers had a SLD greater than 100 msec in the longitudinal 

direction.  Although this suggests an underlying level of dyssynchrony within the normal 

population, closer examination of the velocity curves gives insight into the 

measurements.  Longitudinal velocity curves often exhibit two systolic peaks, and either 

peak can be chosen as the “peak” value.  The problem arises when the first and second 

peak values have different magnitudes in different walls of the myocardium, and an 

apparent dyssynchrony is detected.  

The phenomenon is illustrated below with an example.  Figure 6.14 shows the 

longitudinal velocity curves from one of the two normal volunteers with a SLD greater 

than 100msec.  In both the septal and lateral walls, an initial systolic peak occurs 

simultaneously shortly after the opening of the aortic valve (AVo).  In the septal wall, 

however, a second peak is also observed.  Since the second peak is larger than the first, it 

is picked up by the automated algorithm as the peak value, and a SLD of 132 msec is 

detected in the normal volunteer.  In the figure, the detected peak values in the septal and 

lateral walls are denotes with a *.   



www.manaraa.com

 159 

 

Figure 6.14:  “Dyssynchrony” in the normal volunteer 

 

The TSD-12 measure of dyssynchrony takes into account velocity curves from all 

regions of the myocardium, not just the septal and lateral walls.  Therefore, TSD-12 should 

be more robust and be able to detect dyssynchrony in any region of the myocardium, not 

just between the septal and lateral walls.  TSD-12 was even more efficient at separating 

normal and patient values than the SLD: the difference between the two groups was 

significant in the circumferential and longitudinal directions, and although the difference 

was not significant in the radial direction, patient values were still larger than normal 

values.   
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Tracked vs. Non-tracked Databases 

 The finding that only minor differences exist between databases constructed from 

tracked and non-tracked data is somewhat surprising.  It was expected that tracking of 

individual pixels throughout the myocardium would produce velocity curves different 

from those derived from a stationary ROI placed in the myocardium throughout the 

cardiac cycle.  The relatively large area over which velocities were average (1/6th of the 

myocardial slice in the basal and mid slices, and 1/4th of the myocardial slice in the apex), 

could have obscured some of these differences.   

However, it is important to clarify that the non-tracked data did also follow 

myocardial motion in the radial direction.  In order to measure velocities within the 

myocardium, a template was created for each frame of the cardiac cycle in which the 

endocardial and epicardial borders of the myocardium were manually traced.  Myocardial 

velocities within these borders in each frame were averaged into six myocardial segments 

in accordance with the AHA segmentation guidelines.  This method ensured that 

velocities outside of the myocardium were not included in the segmental average.  

However, the tracing of the endocardial and epicardial borders essentially followed or 

“tracked” these borders throughout the cardiac cycle, if only in the radial direction.  No 

such tracking was performed in the circumferential or longitudinal directions.  Therefore, 

the individual pixels within segments of the myocardium in the non-tracked database did 

change throughout the cardiac cycle.   

Also important to note is that true tracking was only performed in the two in-

plane directions.  In the thru-plane direction, average velocity values were acquired 
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throughout a 10mm imaging slice.  Since the thru-plane velocity used in the tracking 

algorithm was the same regardless of the tracked thru-plane location, the pixels were not 

truly “tracked” in the thru-plane direction.   

The largest standard deviation between the tracked and non-tracked databases was 

observed for measurements of time-to-peak circumferential velocity; this standard 

deviation (both during systole and diastole) was several times larger than the standard 

deviation for measurements of time-to-peak radial velocity.  This may be at least partially 

explained by the lower values of circumferential velocities, which make circumferential 

velocity measurements more susceptible to noise.   

 A bias was observed in measurements of peak diastolic longitudinal velocity, with 

the tracked values being an average of more than 2 cm/s larger than the non-tracked 

values.  The reason for this bias is not known at the time; in fact, it was expected that 

peak values from the tracking algorithm would be greater in magnitude than the non-

tracked values, as the tracking algorithm follows the true motion of pixels throughout the 

cardiac cycle.   

 

Comparison of Dyssynchrony Patients to the Normal Database 

Individual Patient Data 

 Time-to-peak systolic velocity in the two patients compared individually to the 

normal database showed a delay in the lateral wall when compared to the normal 

database.  Although this delay was expected in both the radial and longitudinal directions, 
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it was only observed consistently in the longitudinal direction.  At this time it is not clear 

if such a delay only exists in this direction, or if the velocity acquisition protocol is not 

sensitive enough in the radial direction to detect the delay.  

 In the current analysis, patient values more than two standard deviations from the 

normal mean were selected as being abnormal and potentially indicative of dyssynchrony.  

This two standard deviation cutoff value was selected based on the assumption that 

values within the normal database exhibit a normal distribution and that 95% of the 

normal data will be contained within two standard deviations of the mean value.  

However, further studies are necessary to determine if these assumptions are accurate and 

what cutoff value is truly indicative of dyssynchrony.   

 

Different outcomes with Tracked and non-tracked databases 

Measurements of peak circumferential velocity were much more likely to be 

classified differently whether compared to either the tracked or the non-tracked databases 

than either peak radial or longitudinal velocity measurements.  Several factors may 

account for these trends.  In general, peak circumferential velocities are smaller in 

magnitude than peak radial or longitudinal velocities.  Since a uniform velocity encoding 

value was used for the measurement of velocities in all three directions, the velocity-to-

noise ratio will be smaller for the smaller velocities of circumferential motion.  This will 

make the signal more susceptible to noise and difficult to interpret.   
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In addition, peak velocity measurements were much more likely to be classified 

differently than time-to-peak velocity measurements.  This may be explained by the fact 

that employing the tracking algorithm will likely change the magnitude of peak velocities 

without affecting the timing of the peak velocities.   

Finally, the most robust measurements were time-to-peak measurements during 

diastole.  Diastolic relaxation is a much more rapid process than systolic contraction.  

Diastolic relaxation often appears only in a single frame on velocity images and peak 

diastolic velocities are easily identified on velocity curves as sharp negative peaks.  In 

comparison, systolic contraction is a slower process with lower velocities that often 

develop over several MR PVM time frames.  It is not uncommon to see velocity curves 

with two peaks during systole, or in which systole is depicted as a slowly increasing 

curve.  Therefore, it is much easier to accurately and reproducibly identify the time-to-

peak diastolic contraction velocity.   

 

Study Limitations 

Age of Subjects 

Average age of the volunteers for the normal database was 27.2+/-4.9 years, while 

the average age of the eight heart failure patients was 55.0+/-11.8 years.  It has previously 

been shown that the magnitude of peak contraction velocities decreases with increasing 

age161, and that aging leads to a prolongation of diastolic filling time52,59.  Under ideal 

conditions, the normal database would have been constructed from volunteers age-
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matched to the heart failure patient population.  Since that was not possible for this study, 

comparisons between patient and normal values were only made for the timing of systolic 

velocities, not for the magnitude of peak velocities or the timing of diastolic velocities.   

 

Twist in Middle Myocardial Slices 

During normal cardiac contraction, basal and apical myocardial slices twist in 

opposing directions.  In basal slices, systolic velocities are positive (clockwise rotation 

when observed from the apex) and diastolic velocities are negative (counter-clockwise 

rotation when observed from the apex).  At the apex, systolic velocities are negative 

(counter-clockwise rotation) and diastolic velocities re positive (clockwise rotation).  The 

direction of twist reverses somewhere along the length of the LV, but the exact location 

cannot be delineated based on three-slices of data collected in this study.   

During systole, the algorithm that identified peak velocities searched for the 

largest positive circumferential velocity in the basal slice, but the largest negative 

circumferential velocity in the apical slice; during diastole the signs on the velocities 

were reversed.  Since the direction of twist in the middle slice was unknown, the 

assumption was made that twist in the middle slice more closely resembled the twist in 

basal slice than the apical slice.  However, it is possible that the middle slice was taken at 

a location twist more closely resembled the apical slices, and thus, the search for peak 

velocities was incorrect.  In the future, a long-axis slice with three-directional velocity 

encoding or more detailed short axis slices would be helpful in identifying the location of 

twist reversal and correctly identifying peak velocities in the middle slice.   
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Time-to-Peak Analysis 

Database values are in pure time after detection of the R-wave rather than 

percentage of cardiac cycle, meaning that the same scale is used for all subjects, 

regardless of heart rate.  This approach was chosen over a sliding scale where time-to-

peak was determined as a percentage of total cardiac cycle length because the length of 

systole is fairly constant, regardless of heart rate.  Systolic length does not begin to 

change until high heart rates are reached, which we did not anticipate happening to 

subjects under resting conditions within the MR magnet.  Therefore, measurements of 

time-to-peak systolic velocity conducted in a straight time-scale can be compared 

between subjects with different heart rate.  The length of diastole, however, is highly 

variable depending on heart rate.  However, the difference is primarily in the length of 

the resting diastole period, and not the active relaxation.  Therefore, a subject with a 

drastically lower heart rate will have a much longer diastolic period, but during the 

majority of that time the heart will not be moving.  Therefore, we felt that it was better to 

compare the straight times than to normalize to percentage of cardiac cycle.  However, as 

has been reported previously, the most accurate option would have been to utilize a 

combination of the two162.   

 

Conclusions 

Databases describing four parameters of the normal myocardial contraction 

pattern (peak systolic velocity, peak diastolic velocity, time-to-peak systolic velocity, and 

time-to-peak diastolic velocity) were constructed from a group of ten normal volunteers.  
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Databases were constructed using both tracked and non-tracked velocity data, and it was 

determined that the choice of velocity data did not have a major affect on the value of the 

database parameters.  Velocity data was also acquired in eight heart failure patients prior 

to CRT implantation, and patient values were compared to the normal databases, both on 

an individual patient basis and as a group.  Systolic dyssynchrony values (SLD and TSD-

12) were computed for both the normal and patient populations, and significantly higher 

levels of dyssynchrony were detected in the patient population for both parameters.  
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CHAPTER 7 

DEVELOPMENT OF SOFTWARE FOR COMPUTING RADIAL 

STRAIN AND STRAIN RATE FROM MR PVM VELOCITY DATA 

Introduction 

The relatively high spatial resolution of MR PVM data offers the possibility of 

computing strain values within the myocardium on a pixel-by-pixel basis.  Furthermore, 

MR PVM velocity data offers the possibility of differentiating between endocardial and 

epicardial strain and strain rate (SR) values.  In addition, the three-directional nature of 

the underlying velocity data makes it possible to compute radial strain values, a quantity 

that is particularly difficult to measure with ultrasound.   

The objectives of this study were 1) to develop a technique for measuring radial 

strain and SR from MR PVM tissue velocity data and 2) to evaluate differences in radial 

strain and SR between the endocardial and epicardial layers of the myocardium.  

 

Methods 

Study Population 

 Ten normal, healthy volunteers (mean age 27.7+/-5.1 yrs, 8 male) participated in 

this study.  The study protocol was approved by the University’s Institutional Review 

Board, and informed consent was obtained from all participants prior to participation.   
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Imaging Protocol 

 Survey images were acquired first, followed by two-chamber vertical long axis 

(VLA), four-chamber horizontal long axis (HLA), and short axis (SA) steady-state free 

procession (SSFP) cine images.  Velocity images were acquired using the final protocol 

outlined in Chapter 3.   

Background phase error was removed using a least-squares plane fitted to static 

tissue, as describing in Chapter 3130.  The acquired three-directional velocities were 

converted to radial velocity (positive toward the center of the LV blood pool), 

longitudinal velocity (positive toward the apex), and circumferential velocity (positive for 

clockwise rotation when viewed from the apex).   

 

Computation of Radial Strain and SR  

 Radial SR was calculated directly from radial velocity data.  For each phase in the 

cardiac cycle, radial velocity was measured along 48 equally-spaced lines emanating 

radially outward from the center of the LV blood pool.  The velocity difference between 

two points a half-pixel distance apart along a line in the myocardial wall was plotted 

against change in radius between the two points; the process was repeated for every 

combination of two points in the myocardium along a given line.  SR at that myocardial 

location was calculated as the slope of the regression line163.   

By convention, radial SR values were defined as positive for myocardial 

thickening and negative for myocardial thinning.  By using all the points along the radial 
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line, the average transmural SR throughout the entire myocardial wall was determined.  

To compute endocardial and epicardial SR values, the thickness of the myocardial wall 

along each radial line was subdivided into two regions, and the SR was computed 

independently for each region.   

Figure 7.1 illustrates the method for computing radial strain rate from MR PVM 

velocity data.  Figure 7.1A shows the short-axis MR image of the myocardium and the 48 

lines along which radial velocities were measured.  Figure 7.1B shows a template of the 

segmented myocardial wall and points in a single line along which velocity differences 

were taken. In this particular example, the myocardium is 8-pixels thick; the myocardial 

template shows 15 points (half-pixel steps) where velocity differences were computed.  

Figure 7.1C shows a graph of change in radius (dr) vs. change in velocity (dV) between 

all points in the template shown in B.  For the 15 locations shown in B, there are 105 

unique two-value combinations of dV/dr, explaining the large number of points shown in 

7.1C.  Points used to compute transmural strain rate are shown as light gray dots; 

endocardial points are shown as crosses and epicardial points are shown as triangles.  

Figure 7.1D shows the strain rate curve throughout the entire cardiac cycle from the same 

region.  The * denotes the strain rate values computed from the plot in C).  

Strain was determined by integration of the SR curves (ε=∫SR dt).  Drift was 

corrected by applying an algorithm currently used in ultrasound strain imaging.  Briefly, 

the physical boundary condition that strain must return to its initial starting value was 

applied, and a linear correction was applied to the strain curve164.   
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Figure 7.1:  Method for computing radial strain rate from MR PVM velocity data.   

 

For each imaging slice the analysis yielded transmural, endocardial, and 

epicardial strain and SR values for 48 myocardial locations in each phase of the cardiac 

cycle.  In accordance with American Heart Association (AHA) guidelines for 

standardized myocardial segmentation, values in the mid and basal slices were each 

averaged into six segments135.  
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Validation of Transmural Strain Values 

 Endocardial and epicardial borders were traced on a basal slice of short axis 

steady state free procession (SSFP) images acquired at the same location as the MR PVM 

tissue velocity maps using MASS (Myocardial Analysis Software, AZL, Leiden, The 

Netherlands).  Radial strain values were computed from these contours based on 

myocardial thickness (T) over time.  Eulerian strain was computed as the difference 

between myocardial thickness at a given time point (t) and the thickness at the end-

diastolic starting point (to) divided by thickness at the current time point [ε=[T(t)-

T(to)]/T(t)].  To compare data with transmural strain values computed from MR PVM 

velocity data, strain values were also averaged into six basal segments in accordance with 

AHA standardized myocardial segmentation guidelines.   

 

Statistics 

 Peak transmural radial strain values computed from MR PVM tissue velocity data 

were compared to peak transmural radial strain values computed cine SSFP contours in 

the same AHA segment using Bland-Altman analysis.  Peak endocardial and epicardial 

values were compared using a paired, two-tailed t-test with p-values <0.05 considered 

statistically significant.   

Results 

Three-directional velocity maps were successfully acquired in all study 

participants, and strain and SR values were computed from all radial velocity datasets.  
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Radial SR values were positive during systole (contraction) and negative during diastole 

(relaxation).  Figure 7.2A shows transmural radial strain rate curves from the six AHA 

segments in the basal slice of a healthy volunteer.  Figure 7.2B shows strain curves from 

the same six basal segments in the same volunteer.  The curves clearly depict the 

evolution of myocardial contraction and relaxation.   

 

 

Figure 7.2: Transmural radial strain and SR curves from a normal volunteer.    

 

 

Validation of Transmural Radial Strain Values 

 Excellent agreement was observed between peak strain values computed from 

contours drawn on the cine SSFP images and strain derived by MR PVM tissue velocity 

images.  Peak strain values computed by cine SSFP and MR PVM were not significantly 
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different in any of the six basal segments examined.  Figure 7.3 shows the average of 

peak strain values by MR PVM tissue velocity mapping and cine SSFP wall thickening 

from 10 normal volunteers.   

 

 

Figure 7.3:  Validation of peak transmural radial strain measurements.   

 

Across all six basal regions, average peak strain determined by the contours was 

38.1+/- 5.4%, and by the MR PVM velocity technique was 38.0+/-6.2%, giving an 

average difference between the two techniques of 0.1%, Table 7.1.  Bland-Altman 

analysis showed that the mean difference between the contour and MR PVM method for 

all measurements of peak strain was -0.18 +/- 18.3%.   
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Table 7.1: Comparison of peak  transmural strain values  

AHA segment 
# 

Contours on 
cine SSFP 

images (%) 

Strain from 
MR PVM 

velocity data 
(%) 

Difference 
Contours-
MR PVM 

(%) 

 

p-value 

1 41.8 +/-11.0 42.3 +/-23.9 -0.6 p=NS 

2 33.3 +/- 8.1 39.9 +/- 19.3 -6.6 p=NS 

3 29.5 +/- 10.9 27.0 +/- 13.8 2.5 p=NS 

4 42.2+/-12.6 41.8 +/- 15.7 0.4 p=NS 

5 40.5 +/- 11.2 42.8 +/-18.2 -2.3 p=NS 

6 41.6 +/- 13.6 34.3+/-9.4 7.3 p=NS 

average 38.1+/-5.4 38.0+/-6.2 -0.1 P=NS 

 

Endocardial-Epicardial Strain Gradient 

 Peak endocardial radial strain values were significantly larger than peak epicardial 

strain values.  In the basal slice, the value of peak endocardial radial strain was 45.3+/-

25.6% and the value of peak epicardial radial strain was 35.6+/-20.7%, p<0.05.  In the 

mid slice, peak endocardial values were also larger than peak epicardial values (peak 

endo=41.3+/-31.9%, peak epicardial radial strain=31.6+/-18.9%, p<0.05).  

 

Endocardial-Epicardial SR Gradient 

An endocardial-epicardial SR gradient was also observed, with peak endocardial 

SR values being larger than peak epicardial SR values.   During systole this endocardial-

epicardial SR gradient was observed in both the mid and basal slices.  In the basal slice, 
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peak endocardial SR values were 4.5+/-2.3 s-1and peak epicardial SR values were 3.4+/-

1.8 s-1, p<0.05.  In the mid slice, peak endocardial SR was 3.6+/-1.6 s-1 and peak 

epicardial SR was 2.9+/-1.3 s-1, p<0.05. Figure 7.4 shows peak endocardial and epicardial 

strain and SR values during systole.  * denotes where peak endocardial values were 

significantly larger than peak epicardial (p<0.05).   

 

 

Figure 7.4: Peak endocardial and epicardial strain and SR values during systole.   

 

Peak endocardial SR values were also greater in magnitude than peak epicardial 

SR values during diastole, although the differences were not significant, Table 7.2.  

(Basal slice, peak endocardial SR=-4.9+/-2.3 s-1, peak epicardial=-4.4+/-2.3 s-1, p=NS; 

mid slice peak endocardial=-4.4+/-2.8 s-1, peak epicardial=4.0+/-1.4 s-1, p=NS).  
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Table 7. 2: Peak Endocardial and Epicardial Strain Rate Values 

 Basal Slice Mid Slice 

Systole 

Endocardial Peak (s-1) 4.5+/-2.3 3.6+/-1.6 

Epicardial Peak (s-1) 3.4+/-1.8 2.9+/-1.3 

p-value p<0.05 p<0.05 

   

Diastole 

Endocardial Peak (s-1) -4.9+/-2.3 -4.4+/-2.8 

Epicardial Peak (s-1) -4.4+/-2.3 -4.0+/-1.4 

p-value p=NS p=NS 

 

 

 

Discussion 

This study presents methodology and illustrates the feasibility of computing radial 

strain and SR within the myocardium from PCMR tissue velocity data.  Peak strain 

values computed from PCMR velocity data showed excellent agreement with peak 

transmural strain measurements from contours drawn on cine SSFP images acquired at 

the same myocardial location.  The excellent spatial resolution of the acquired PCMR 

velocity data allowed for a distinction between transmural, endocardial and epicardial 

values.  Endocardial-epicardial gradients were observed in both peak strain and SR 

values.   

 



www.manaraa.com

 177 

Comparison to Previously Published Values 

Values of peak radial strain measured with TDI have ranged from 18 to 48%, with 

the average being around 36%109,165-167.  The average value of peak transmural strain 

reported in the present study was 39.6 +/- 8.9%, which is in agreement with the mean of 

previously reported values166,167.   

Peak radial SR values of between 1.6 and 3.09 s-1 during systole and between -3.6 

and -7.0s-1 during early diastole have been reported in the literature109,147,165-167.  Peak 

radial SR in this study during systole (3.05+/-1.08 s-1) and early diastole (-4.19+/-1.73s-1) 

was within the previously published range.   

 

 

Endocardial- Epicardial Strain Gradient 

We observed peak radial strain values to be significantly larger in the 

endocardium than in the epicardium.  The presence of an endocardial-epicardial strain 

gradient has previously been observed in the myocardium, both in animal models and in 

human studies168-172.  However, the present study is the first to document the presence of 

a radial endocardial-epicardial strain gradient in human subjects.   

Tagged MRI data has previously shown that the magnitude of peak endocardial 

principal strain is an average of 13+/-9% (p<0.05) greater than the magnitude of peak 

epicardial principal strain in open-chested dogs(endocardial=-24+/-7%, epicardial=-11+/-

7%)168.  In a close-chested canine study, the endocardium showed approximately twice as 

much radial strain as the epicardium(43.3% vs. 25.5%, p<0.001)169.  In open-chested 
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pigs, a linear relationship was demonstrated between transmural location and peak radial 

strain during ejection, with endocardial values greater than epicardial values170.   

Although no data is available on the presence of a radial strain gradient across the 

myocardium in human subjects, cross-fiber shortening in normal human hearts has 

repeatedly been shown to have a steep transmural gradient, with endocardial values being 

greater than epicardial values171,172.  Although cross-fiber shortening describes strain 

along a different direction than radial strain (radial strain refers to strain in a myocardial 

coordinate system, while cross-fiber strain refers to a direction perpendicular to the 

orientation of the individual myocardial fibers169), a relationship has previously been 

established between cross-fiber strain and total wall thickening169.  However, care must 

be taken when interpreting these results, as Rademakers et al established that cross-fiber 

strain and wall thickening were related, but the quantitative relationship between them 

was not determined.  

 

 

Endocardial- Epicardial SR Gradient 

This is the first study to demonstrate the presence of a radial SR gradient in the 

myocardium.  SR is arguably a more sensitive marker of cardiac function than strain, 

more closely reflecting the underlying myocardial contractility.  In addition, only SR (and 

not strain) has been shown to be load-independent173.  During dobutamine infusion, 

increases in SR are seen before increases in strain105, and SR has proven to be more 

sensitive at differentiating between reversible and non-reversible injury following 

ischemia105.  
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A SR gradient between endocardial, epicardial, and midwall locations has been 

reported in the longitudinal direction of sheep.  TDI showed that endocardial SR values 

were larger than midwall values, and that midwall values were larger than epicardial 

values (peak endo=-3.4+/-2.2, peak mid=-1.8+/-1.5, peak epi=-0.63+/-1.0)108.  A 

transmural gradient of scalar SR values has also been documented across the 

myocardium in healthy human subjects during systole: peak endocardial values were 

roughly double peak epicardial values (endo=1.0s-1, epi= 1.5-2.0s-1)174.   

 

Other SR Measurement Methods 

Both strain and SR can be computed via a number of different methods, including 

TDI velocity data, echocardiographic speckle tracking, tagged MRI, or displacement 

encoded (DENSE) MRI97,175-177.  However, each of these methods has its own set of 

drawbacks.  Strain computation from TDI velocity data has problems with limited 

acoustic windows and is highly dependent on sonographer skill.  In addition, radial strain 

is difficult to obtain throughout the entire myocardium due to near-field effects.  The 

spatial resolution of tag lines in MRI tissue tagging is often insufficient for more than one 

tag intersection within the myocardial wall, and T1 relaxation causes tag fading in the 

later parts of the cardiac cycle.   

The method for radial myocardial strain computation presented in this paper is 

based on PCMR velocity data.  PCMR has many of the same advantages as DENSE 

imaging: information is available throughout the entire myocardium and throughout the 

entire cardiac cycle.  In DENSE, the phase of the MR signal is used to encode position.  

Strain is then computed as a derivative of length, and SR is calculated as an additional 
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derivative of the strain values.  The two derivates may exacerbate noise and may require 

additional filtering or averaging over large regions.  With PCMR, the phase of the MR 

signal is used to encode velocity, rather than position.  SR is computed as a single spatial 

derivative of velocity, and strain values are obtained by integrating the SR data.  In 

theory, strain and SR values computed with PCMR may be less susceptible to noise than 

DENSE measurements.  Future work will involve a direct comparison of strain and SR 

measurements made with PCMR and DENSE.   

In this study we chose to subdivide the myocardium into two regions (endocardial 

and epicardial), but it is possible to divide the myocardial wall into even small units and 

compute strain independently in each one, such as endocardial, midwall, and epicardial 

locations.  The choice of subdivisions will be limited by pixel size and myocardial 

thickness.   

PCMR methods to determine strain and SR have been previously suggested.  Zhu 

et al. developed an accurate and reproducible strain computation method based on fitting 

tissue tracking results to a local deformation model178.  Results from human data showed 

that maximum principal strain was dependent on radial location.  The SR computation 

method presented in this paper differs from that presented by Zhu et al. in several ways.  

First, tissue tracking is not employed, so the computed strain values are Eulerian and not 

Lagrangian.  In addition, the current method does not employ a model-fit, so no a priori 

knowledge about the LV is required.  Arai et al. developed another method for computing 

SR from PCMR velocity data on a pixel-by-pixel basis147.  The method required the 

application of a rigid-body motion correction scheme to the underlying velocity data 

which eliminated the gross heart translations and rotations of the chest prior to the 
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execution of the strain measurement algorithm.  The method presented in our study uses 

velocity difference from multiple pixels along the radial direction to compute the SR 

value, and the method can be performed without the rigid body motion correction.  SR 

values computed by Arai et al.(2.0+/-0.6sec-1 during systole and -1.4+/-0.6sec-1 during 

early diastole) were slightly lower than those reported in the present study, but a direct 

comparison cannot be made between the open-chested canine model employed by Arai et 

al. and the in-vivo human subjects in the present study.   

 

Study Limitations 

A limitation of this study was that we conducted our analysis only in the radial 

direction.  Peak radial strain values are approximately twice the magnitude of peak 

longitudinal strain values108, and peak radial SR are significantly larger than peak 

longitudinal SR values109.  Therefore, the argument can be made that radial function is 

the most important component of cardiac contraction.  It has been demonstrated that 

during ischemia, radial motion abnormalities are detectable before longitudinal or 

circumferential motion abnormalities106.  Furthermore, it has been shown that radial 

dyssynchrony (defined as the standard deviation of time to peak strain in six basal 

segments) is associated with depressed LV function and that radial dyssynchrony greater 

than 130 msec is predictive of acute response to Cardiac Resynchronization 

Therapy110,111.  Therefore, we limited our present analysis to the radial direction.  

However, it should be noted that the same methodology could be used to compute both 

longitudinal and circumferential strains, although for the computation of longitudinal 
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strains, PCMR tissue velocity images would require acquisition of two-or four-chamber 

views with longitudinal velocity encoding.  

Velocity data acquired with PCMR has poor temporal resolution compared to 

ultrasound studies.  In order to keep errors in strain measurements below 5%, a minimum 

of between 66 and 75 frames per second has been recommended for studies which derive 

strain from velocity data112,164.  The MRI technique utilized in this study acquired 

velocity data at~40 frames per second.  Therefore, it is possible that MRI is 

underestimating peak strain values and that not all aspects of the strain curves are being 

correctly resolved.  Unfortunately, at present it is not possible to further increase the 

temporal resolution of the image acquisition protocol and still acquire velocities within a 

single scan.  

The strain computation method presented in this paper makes the assumption that 

the transmural velocity distribution in the myocardium is linear.  It has been suggested 

that this is a good assumption in normal hearts179, and the dV/dr plots in Figure 7.1C 

show that the assumption holds well for this study population.  However, the linear 

assumption may not hold in heart failure patients and the accuracy of the method may 

decrease.  Furthermore, the linear-fit assumption is an really a smoothing or de-noising 

technique and may affect the SR measurements.  

During contraction the myocardium undergoes twisting and shear, but the radial 

location at which strain is computed remains fixed throughout the cardiac cycle.  

Therefore, the SR measurements derived for any given myocardial region are really an 

average of SR in the myocardial tissue that moved to that material point throughout the 

cardiac cycle.  Because ultimately the strain and SR measurements are averaged into 
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larger regions in accordance with the AHA model for segmentation, it is unclear if this 

additional averaging has a substantial affect on the final values.   

 

 

Conclusions 

In conclusion, we have presented a method for deriving radial strain and SR 

values from PCMR velocity data.  Excellent agreement was demonstrated between peak 

strain measurements derived with the presented method and strain measurements 

computed independently from contours drawn on cine SSFP images.  The methodology 

allows for the possibility of differentiating between transmural, endocardial and 

epicardial values.  The presence of an endocardial-epicardial gradient was demonstrated 

for both strain and SR in healthy volunteers.  
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CHAPTER 8 

CONCLUSIONS 

 

Project Summary 

The overall goal of this project was to develop a method for identifying 

dyssynchrony and selecting patients for CRT based on myocardial wall velocities 

acquired with Magnetic Resonance Phase Velocity Mapping (MR PVM).  To that end, a 

database describing normal myocardial contraction was developed.  The database was 

used as a reference against which to compare patient values and identify wall-motion 

abnormalities present in dyssynchrony.   

The focus of the first specific aim was to develop the MRI image acquisition and 

post-processing protocol for myocardial tissue velocity images.  Starting with an ECG-

gated, segmented GRE phase contrast sequence, navigator echo gating placement, 

velocity interleaving, the velocity encoding value, use of reconstruction filters, rest slabs, 

and SENSE were all explored.  The optimal protocol was determined to be a segment (3 

lines of k-space per cardiac phase), ECG-gated sequence with velocity directions 

interleaved by heartbeat employing a trailing navigator, Venc of 30cm/s, no 

reconstruction filters, rest slabs, and no SENSE.  Furthermore, post-processing software 

for removing background phase correction, tissue tracking, and image standardization 

was developed.   
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Specific aim 2 used a myocardial motion phantom to verify the accuracy of the 

MR PVM sequence and optimize the acquisition parameters for myocardial tissue 

imaging.  Excellent correlation was observed between expected and true motion (0.90 for 

longitudinal velocity and 0.93 for circumferential velocity).  Mean difference between 

measured and true velocity throughout the entire cardiac cycle was -0.15+/-2.8cm/s in the 

longitudinal direction and 0.06+/-1.38 cm/s in the circumferential direction.  MR PVM 

accurately detected the timing of peak velocities (mean diffmeasured-true= 9.4+/-24.4msec in 

the longitudinal direction and 1.0+/-20.3msec in the circumferential direction), but 

slightly overestimated the magnitude of peak velocities (mean diffmeasured-true=1.0+/- 

0.9cm/s in the longitudinal direction and of 3.2+/-1.9cm/s in the circumferential 

direction).  A strong relationship was observed between temporal resolution and tracking 

accuracy (RMSE= 0.04*temp res + 0.32, R2=0.91), while the effects of spatial resolution 

on tracking accuracy were not as strong (RMSE= -0.08*spatial resolution+1.66, 

R2=0.18).  Based on these results, it was concluded that 1) MR PVM can accurately 

measure myocardial velocities, and 2) high temporal resolution is much more important 

for tracking accuracy than high spatial resolution.   

The purpose of specific aim 3 was to compare longitudinal myocardial velocities 

acquired with the optimized MR PVM sequence to Tissue Doppler Imaging, the clinical 

gold standard for measuring myocardial tissue velocities.  The analysis was conducted in 

10 normal volunteers and 10 heart failure patients scheduled for CRT.  Excellent 

correlation was observed between myocardial tissue velocities measured with MR PVM 

and TDI, both in the normal volunteers (R=0.88) and the heart failure patients (R=0.75).  

Similar to the results from the phantom, MR PVM slightly overestimated peak velocities 
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(TDI=0.59*MR+0.3, R=0.96; mean diffMR-TDI=4.35+/-3.7cm/s), but was accurate in 

measuring the timing of peak velocities (TDI=0.96*MR+0.02, R=0.07; mean diffMR-

TDI=5 msec+/-44msec).  Reproducibility was comparable for MR PVM and TDI in 

measuring both peak velocity and time-to-peak velocity.  The main conclusion from this 

specific aim was that MR PVM can be used to measure in-vivo myocardial tissue 

velocities in normal subjects and dyssynchrony patients.   

The goal of specific aim 4 was to construct a database describing the normal 

myocardial contraction pattern in a group of healthy volunteers.  Databases describing 

four parameters of the normal myocardial contraction pattern (peak systolic velocity, 

peak diastolic velocity, time-to-peak systolic velocity, and time-to-peak diastolic velocity) 

were constructed from a group of ten normal volunteers.  Databases were constructed 

using both tracked and non-tracked velocity data, and it was determined that the choice of 

velocity data did not have a major affect on the value of the database parameters.  

Velocity data was also acquired in eight heart failure patients prior to CRT implantation, 

and patient values were compared to the normal databases, both on an individual patient 

basis and as a group.  Systolic dyssynchrony values (SLD and TSD-12) were computed for 

both the normal and patient populations.  Significantly higher (p<0.05) levels of 

dyssynchrony were detected in the patient population for both dyssynchrony parameters.  

The normal database developed in this specific aim can be used as a reference against 

which to compare patient values and identify potential markers of dyssynchrony.   

The goals of specific aim 5 were 1) to develop a technique for measuring radial 

strain and strain rate (SR) from MR PVM tissue velocity data, and 2) to evaluate 

differences in radial strain and SR between the endocardial and epicardial layers of the 
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myocardium.  Peak transmural strain values computed with the developed method were 

compared to peak strain values derived from contours drawn on cine SSFP.  Excellent 

agreement between the two methods (peak εcine SSFP=38.1+/- 5.4%, peak εMR PVM= 38.0+/-

6.2%, p=NS) was observed in a group of 10 normal volunteers.  Furthermore, the 

developed methodology allows for the possibility of differentiating between transmural, 

endocardial and epicardial values, and the presence of an endocardial-epicardial gradient 

was demonstrated for both strain and SR in the healthy volunteers.   

 

 

Clinical Implications 

The overall goal of this project was to develop a screening method based on MR 

PVM velocity data to identify myocardial motion abnormalities present in dyssynchrony.  

The work presented in this thesis provides a vital preliminary step towards this goals, as 

this project demonstrates the feasibility of using the MR PVM technique to measure 

myocardial motion in-vivo in both normal volunteers and heart failure patients prior to 

receiving CRT.  The normal databases constructed in aim 4 can be used as a starting 

point for identifying differences in myocardial motion parameters between responders 

and non-responders and predicting response to CRT prior to device implantation.   
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Suggestions for Further Work 

Combining MR PVM data with delayed-enhancement imaging 

 Information from delayed enhancement gadolinium imaging, which can identify 

the presence, location, and transmurality of scar burden following myocardial infarct, 

could be combined with MR PVM data to provide a more complete description of 

myocardial function.  Recent research has shown that a larger scar burden and fewer 

viable myocardial segments are predicative of non-response to CRT27,30-35; the 

combination of MR PVM and gadolinium enhancement could help identify patients 

unlikely to respond to CRT.  

 When patient values were individually compared to the normal database in this 

project, time-to-peak systolic velocity in the radial direction for patient 1 did not show 

any delayed regions (areas in which patient values were more than two standard 

deviations away from the normal mean).  This was an unexpected finding, as the heart 

failure of patient 1 was known to be ischemic in origin and an inferior wall infarct had 

previously been documented.  However, a Bulls-eye plot of time-to-peak systolic radial 

velocity for just patient 1 showed a region of delayed systolic contraction in the inferior 

wall.  The delayed region correlated well with the infracted area, which was seen as an 

area of decreased myocardial thickness, Figure 8.1.  In the figure, the white arrows 

indicate the orientation of the anterior RV insertion point and the white asterick indicates 

the area of infarction or delayed contraction.   
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Figure 8.1:  Agreement between myocardial thickness and delayed time-to-peak in 
patient 1. 

 

 Although this was the area with the greatest delay, it would not be a suitable 

location for a pacing lead, as the myocardial thickness map suggests that it is an infracted 

region.  The combination of the scar map and the time-to-peak velocity map of the 

myocardium suggest that the lateral wall—in which time-to-peak is only slightly delayed, 

but which does not have transmural scar burden—would be a more suitable pacing site.  

Information from both the time-to-peak map and the scar map are needed to make this 

conclusion.   

 

Cross-Correlation Delay with MR PVM velocity data  

The databases for quantifying normal cardiac function and identifying 

dyssynchrony presented in this work are based on a “time-to-peak” analysis.  While this 



www.manaraa.com

 190 

analysis has been used extensively to identify dyssynchrony75,151, it suffers from the 

significant drawback that only a single point from the entire velocity curve in each 

myocardial segment is utilized in the analysis.  At the temporal resolution used for the 

acquisition of MR PVM velocity data, only one of approximately 30 points throughout 

the cardiac cycle is used, meaning that over 90% of the collected data is not used in the 

analysis.    

Our lab has developed a mathematical method to quantify dyssynchrony based on 

data collected throughout the cardiac cycle (not just peak values).  The method uses a 

cross-correlation (XC) function to calculate a temporal delay between two myocardial 

tissue velocity profiles.  Some preliminary data suggests that the XC delay between two 

velocity curves would provides a more accurate measure of dyssynchrony and may be 

better able to separate subjects with dyssynchrony from normal volunteers than methods 

based on “times-to-peak” analysis180. 

For example, the normal volunteer shown in Figure 6.14 was identified as having 

dyssynchronous contraction based on a septal-to-lateral delay of 132msec and a TSD-12 

value of 73msec.  Inspection of the velocity curves from the septal and lateral walls, 

however, clearly shows that this volunteer does not have any dyssynchrony.  The XC 

delay was able to correctly classify this volunteer as normal, as the XC delay between the 

septal and lateral walls in the basal slice was calculated to be 0msec.   

Future work could focus on developing a database of the normal XC delay and 

determining if the XC delay could be utilized to identify dyssynchrony patients and 

separate clinical CRT responders and non-responders.  
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Final Thoughts 

 Predicting which patients will benefit from CRT is a complex and difficult issue, 

as response to CRT is not only mediated by the underlying mechanical dyssynchrony in 

the myocardial wall, but also other factors such as lead position, heart failure progression, 

and the location of myocardial infarct scars.  Therefore, at best, this project can only 

address one of the many underlying factors affecting response to CRT.  However, it is 

hoped that the MR imaging protocol and the normal database developed in this project 

will provide useful insights into normal myocardial contraction and can one day be part 

of a tool used to more specifically identify patients suitable for CRT.   
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APPENDIX A 

NORMAL DATABASE FROM NON-TRACKED VELOCITY DATA  

 

 The non-tracked database was constructed in an identical manner to the tracked 

database described in Chapter 6, but with the exception that the data was not input into 

the tracking algorithm.  In other words, this database is constructed from MR PVM 

velocity data as it appears directly from the scanner (although background phase 

correction was still applied).   

 The non-tracked database had essentially the same features as the tracked 

database.  For peak velocity measurements, values were similar (Table X), and the 

standard deviation across the ten normal volunteers was low in both databases.  

Furthermore, both databases showed a difference in the magnitude of peak contraction 

velocity between the septal and the lateral walls (with velocity magnitude in the lateral 

wall being larger).   

 Time-to-peak velocity measurements were also nearly identical between the 

tracked and non-tracked databases.  The non-tracked database showed slightly higher 

standard deviation for measurements of time-to-peak longitudinal systolic velocity, while 

the tracked database had a slightly higher standard deviation for measurements of time-

to-peak longitudinal diastolic velocity, mainly within the apical regions.   
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Table A.1:  Peak velocity database from non-tracked data 

AHA 
Segment 

# 

Time-to-Peak Systolic 
Velocity 

(msec after R-wave detection) 

Time-to-Peak Diastolic 
Velocity 

(msec after R-wave detection) 

  Vr Vc Vz Vr Vc Vz 

1 5.1+/-1.0 2.3+/-1.1 4.6+/-1.5 -7.0+/-1.8 -2.3+/-1.1 -10.9+/-2.1

2 3.3+/-1.2 3.0+/-1.1 3.9+/-0.7 -4.2+/-1.5 -2.3+/-1.4 -10.3+/-1.8

3 2.5+/-0.8 3.8+/-1.2 4.5+/-0.9 -5.5+/-2.2 -3.2+/-1.2 -10.1+/-1.9

4 3.5+/-1.3 3.5+/-1.1 6.9+/-1.8 -6.8+/-1.3 -4.1+/-1.3 -11.7+/-3.0

5 4.0+/-1.2 3.2+/-1.3 7.9+/-2.0 -7.4+/-1.1 -3.7+/-1.3 -14.9+/-3.8

B
as

al
 S

lic
e 

6 4.2+/-0.6 3.1+/-1.1 6.9+/-1.7 -8.5+/-1.5 -3.8+/-1.2 -14.2+/-2.7

7 3.5+/-0.5 1.2+/-0.8 3.8+/-1.6 -6.2+/-1.7 -1.7+/-1.2 -7.4+/-2.0

8 2.8+/-0.7 2.1+/-1.0 3.3+/-1.3 -5.7+/-1.7 -2.1+/-0.8 -7.1+/-2.3

9 3.1+/-0.9 2.2+/-0.9 4.1+/-1.2 -5.7+/-1.4 -2.0+/-0.7 -6.4+/-2.0

10 3.5+/-1.3 1.1+/-0.7 5.9+/-1.6 -5.7+/-1.5 -2.5+/-0.6 -7.9+/-2.7

11 3.5+/-1.1 0.8+/-0.9 6.7+/-1.5 -7.0+/-1.3 -1.7+/-0.8 -10.3+/-2.3

M
id

dl
e 

Sl
ic

e 

12 4.2+/-1.2 1.9+/-1.9 5.8+/-1.6 -6.7+/-1.5 -2.1+/-1.5 -9.6+/-2.1

13 2.3+/-1.1 -4.7+/-1.6 2.7+/-1.0 -5.2+/-1.7 4.0+/-1.3 -3.8+/-1.9

14 2.5+/-0.9 -3.0+/-1.7 1.8+/-0.9 -4.5+/-2.2 1.8+/-0.8 -2.7+/-1.6

15 4.6+/-1.3 -1.9+/-1.5 3.7+/-1.4 -5.1+/-1.5 2.9+/-1.2 -3.9+/-1.8

A
pi

ca
l S

lic
e 

16 4.2+/-1.6 -2.9+/-1.0 5.3+/-1.4 -6.1+/-1.7 3.5+/-1.9 -6.1+/-2.1
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Figure A.1:  Peak Velocity Database from non-tracked data  
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Figure A.2:  Mean +/-2std of peak velocity in non-tracked database 
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Table A.2:  Time-to-peak velocity database from non-tracked data 

AHA 
Segment 

# 

Time-to-Peak Systolic 
Velocity 

(msec after R-wave detection) 

Time-to-Peak Diastolic 
Velocity 

(msec after R-wave detection) 

  Vr Vc Vz Vr Vc Vz 

1 120.7+/-
38.0 

177.2+/-
36.8 

151.6+/-
61.1

490.4+/-
60.1 

585.8+/-
138.8 

508.5+/-
33.0

2 131.1+/-
46.5 

195.2+/-
59.7 

184.9+/-
60.8

531.6+/-
91.4 

531.8+/-
85.9 

511.0+/-
35.4

3 182.0+/-
47.5 

190.2+/-
52.8 

164.4+/-
68.0

549.8+/-
42.4 

439.6+/-
57.4 

503.4+/-
35.0

4 174.5+/-
41.2 

201.0+/-
34.1 

105.2+/-
41.4

488.1+/-
39.0 

449.4+/-
67.6 

500.8+/-
34.0

5 179.7+/-
59.6 

187.6+/-
47.6 

92.4+/-
15.9

477.7+/-
35.1 

472.5+/-
76.5 

503.4+/-
35.0

B
as

al
 S

lic
e 

6 156.7+/-
39.3 

172.3+/-
47.4 

100.1+/-
18.5

480.2+/-
35.4 

498.1+/-
54.6 

505.9+/-
33.1

7 154.4+/-
49.1 

221.0+/-
64.7 

131.4+/-
81.9

521.3+/-
37.6 

573.1+/-
179.9 

518.8+/-
32.3

8 174.8+/-
47.4 

154.0+/-
57.1 

174.3+/-
76.0

536.7+/-
42.2 

542.5+/-
116.8 

508.5+/-
36.2

9 184.7+/-
24.6 

179.8+/-
37.1 

146.0+/-
57.2

536.8+/-
29.3 

547.2+/-
108.1 

511.4+/-
34.3

10 187.4+/-
43.8 

187.6+/-
64.5 

95.0+/-
17.1

511.0+/-
40.7 

521.3+/-
83.6 

498.2+/-
37.6

11 200.2+/-
64.3 

164.6+/-
65.1 

92.4+/-
15.9

498.2+/-
40.9 

564.6+/-
90.1 

518.7+/-
42.9

M
id

dl
e 

Sl
ic

e 

12 136.0+/-
54.9 

192.9+/-
86.3 

95.0+/-
16.9

505.9+/-
33.1 

575.8+/-
134.1 

505.9+/-
33.8

13 151.9+/-
53.8 

110.2+/-
36.3 

92.4+/-
10.6

524.0+/-
37.2 

436.4+/-
56.6 

503.4+/-
29.6

14 184.8+/-
32.5 

141.4+/-
69.5 

201.3+/-
109.1

560.1+/-
48.4 

523.7+/-
138.3 

539.4+/-
65.3

15 174.5+/-
29.1 

174.7+/-
89.7 

92.5+/-
10.9

537.1+/-
41.5 

585.0+/-
100.0 

495.6+/-
38.7

A
pi

ca
l S

lic
e 

16 138.6+/-
66.4 

118.1+/-
52.1 

95.0+/-
16.9

516.2+/-
37.6 

454.6+/-
109.4 

500.7+/-
40.4
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Figure A.3  Time-to-peak velocity database from non-tracked data 
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Figure A.4 Mean +/-2std of time-to-peak velocity in non- tracked database  
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